scholarly journals The Zariski Topology on the Graded Primary Spectrum Over Graded Commutative Rings

2019 ◽  
Vol 74 (1) ◽  
pp. 7-16
Author(s):  
Khaldoun Al-Zoubi ◽  
Malik Jaradat

Abstract Let G be a group with identity e and let R be a G-graded ring. A proper graded ideal P of R is called a graded primary ideal if whenever rgsh∈P, we have rg∈ P or sh∈ Gr(P), where rg,sg∈ h(R). The graded primary spectrum p.Specg(R) is defined to be the set of all graded primary ideals of R.In this paper, we define a topology on p.Specg(R), called Zariski topology, which is analogous to that for Specg(R), and investigate several properties of the topology.

2019 ◽  
Vol 19 (06) ◽  
pp. 2050111 ◽  
Author(s):  
Ayman Badawi ◽  
Ece Yetkin Celikel

Let [Formula: see text] be a commutative ring with nonzero identity. In this paper, we introduce the concept of 1-absorbing primary ideals in commutative rings. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-absorbing primary ideal of [Formula: see text] if whenever nonunit elements [Formula: see text] and [Formula: see text], then [Formula: see text] or [Formula: see text] Some properties of 1-absorbing primary ideals are investigated. For example, we show that if [Formula: see text] admits a 1-absorbing primary ideal that is not a primary ideal, then [Formula: see text] is a quasilocal ring. We give an example of a 1-absorbing primary ideal of [Formula: see text] that is not a primary ideal of [Formula: see text]. We show that if [Formula: see text] is a Noetherian domain, then [Formula: see text] is a Dedekind domain if and only if every nonzero proper 1-absorbing primary ideal of [Formula: see text] is of the form [Formula: see text] for some nonzero prime ideal [Formula: see text] of [Formula: see text] and a positive integer [Formula: see text]. We show that a proper ideal [Formula: see text] of [Formula: see text] is a 1-absorbing primary ideal of [Formula: see text] if and only if whenever [Formula: see text] for some proper ideals [Formula: see text] of [Formula: see text], then [Formula: see text] or [Formula: see text]


2016 ◽  
Vol 24 (1) ◽  
pp. 335-351 ◽  
Author(s):  
Hojjat Mostafanasab ◽  
Ece Yetkin ◽  
Ünsal Tekir ◽  
Ahmad Yousefian Darani

Abstract All rings are commutative with 1 ≠ 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a; b ∈ R and m ∈ M and abm ∈ N, then am ∈ M-rad(N) or bm ∈ M-rad(N) or ab ∈(N :R M). It is shown that a proper submodule N of M is a 2-absorbing primary submodule if and only if whenever I1I2K ⊆ N for some ideals I1; I2 of R and some submodule K of M, then I1I2 ⊆ (N :R M) or I1K ⊆ M-rad(N) or I2K ⊆ M-rad(N). We prove that for a submodule N of an R-module M if M-rad(N) is a prime submodule of M, then N is a 2-absorbing primary submodule of M. If N is a 2-absorbing primary submodule of a finitely generated multiplication R-module M, then (N :R M) is a 2-absorbing primary ideal of R and M-rad(N) is a 2-absorbing submodule of M.


Author(s):  
Ece Yetkin Celikeli ◽  
Hani Khashan

Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. The purpose of this paper is to introduce the concept of weakly S-primary ideals as a new generalization of weakly primary ideals. An ideal I of R disjoint with S is called a weakly S-primary ideal if there exists s∈S such that whenever 0≠ab∈I for a,b∈R, then sa∈√I or sb∈I. The relationships among S-prime, S-primary, weakly S-primary and S-n-ideals are investigated. For an element r in any general ZPI-ring, the (weakly) S_{r}-primary ideals are charctarized where S={1,r,r²,⋯}. Several properties, characterizations and examples concerning weakly S-primary ideals are presented. The stability of this new concept with respect to various ring-theoretic constructions such as the trivial ring extension and the amalgamation of rings along an ideal are studied. Furthermore, weakly S-decomposable ideals and S-weakly Laskerian rings which are generalizations of S-decomposable ideals and S-Laskerian rings are introduced.


2000 ◽  
Vol 43 (1) ◽  
pp. 73-94
Author(s):  
Koji Nishida

AbstractLet (A, m) be a Noetherian local ring such that the residue field A/m is infinite. Let I be arbitrary ideal in A, and M a finitely generated A-module. We denote by ℓ(I, M) the Krull dimension of the graded module ⊕n≥0InM/mInM over the associated graded ring of I. Notice that ℓ(I, A) is just the analytic spread of I. In this paper, we define, for 0 ≤ i ≤ ℓ = ℓ(I, M), certain elements ei(I, M) in the Grothendieck group K0(A/I) that suitably generalize the notion of the coefficients of Hilbert polynomial for m-primary ideals. In particular, we show that the top term eℓ (I, M), which is denoted by eI(M), enjoys the same properties as the ordinary multiplicity of M with respect to an m-primary ideal.


Author(s):  
Alaa Melhem ◽  
Malik Bataineh ◽  
Rashid Abu-Dawwas

Let $G$ be a group with identity $e$ and $R$ be a commutative $G$-graded ring with nonzero unity $1$. Graded semi-primary and graded $1$-absorbing primary ideals have been investigated and examined by several authors as generalizations of graded primary ideals. However, these three concepts are different. In this article, we characterize graded rings over which every graded semi-primary ideal is graded $1$-absorbing primary and graded rings over which every graded $1$-absorbing primary ideal is graded primary.


2008 ◽  
Vol 77 (3) ◽  
pp. 477-483
Author(s):  
D. D. ANDERSON ◽  
JOHN KINTZINGER

AbstractLet R and S be commutative rings, not necessarily with identity. We investigate the ideals, prime ideals, radical ideals, primary ideals, and maximal ideals of R×S. Unlike the case where R and S have an identity, an ideal (or primary ideal, or maximal ideal) of R×S need not be a ‘subproduct’ I×J of ideals. We show that for a ring R, for each commutative ring S every ideal (or primary ideal, or maximal ideal) is a subproduct if and only if R is an e-ring (that is, for r∈R, there exists er∈R with err=r) (or u-ring (that is, for each proper ideal A of R, $\sqrt {A}\not =R$)), the Abelian group (R/R2 ,+) has no maximal subgroups).


2021 ◽  
Vol 20 ◽  
pp. 547-553
Author(s):  
Alaa Melhem ◽  
Malik Bataineh ◽  
Rashid Abu-Dawwas

Let G be a group with identity e and R be a commutative G-graded ring with nonzero unity 1. Graded semi-primary and graded 1-absorbing primary ideals have been investigated and examined by several authors as generalizations of graded primary ideals. However, these three concepts are different. In this article, we character­ ize graded rings over which every graded semi-primary ideal is graded 1-absorbing primary and graded rings over which every graded 1-absorbing primary ideal is graded primary.


2020 ◽  
Vol 27 (4) ◽  
pp. 503-516
Author(s):  
Ayman Badawi ◽  
Brahim Fahid

AbstractLet R be a commutative ring with {1\neq 0}. We recall that a proper ideal I of R is called a weakly 2-absorbing primary ideal of R if whenever {a,b,c\in R} and {0\not=abc\in I}, then {ab\in I} or {ac\in\sqrt{I}} or {bc\in\sqrt{I}}. In this paper, we introduce a new class of ideals that is closely related to the class of weakly 2-absorbing primary ideals. Let {I(R)} be the set of all ideals of R and let {\delta:I(R)\rightarrow I(R)} be a function. Then δ is called an expansion function of ideals of R if whenever {L,I,J} are ideals of R with {J\subseteq I}, then {L\subseteq\delta(L)} and {\delta(J)\subseteq\delta(I)}. Let δ be an expansion function of ideals of R. Then a proper ideal I of R (i.e., {I\not=R}) is called a weakly 2-absorbing δ-primary ideal if {0\not=abc\in I} implies {ab\in I} or {ac\in\delta(I)} or {bc\in\delta(I)}. For example, let {\delta:I(R)\rightarrow I(R)} such that {\delta(I)=\sqrt{I}}. Then δ is an expansion function of ideals of R, and hence a proper ideal I of R is a weakly 2-absorbing primary ideal of R if and only if I is a weakly 2-absorbing δ-primary ideal of R. A number of results concerning weakly 2-absorbing δ-primary ideals and examples of weakly 2-absorbing δ-primary ideals are given.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2637
Author(s):  
Azzh Saad Alshehry

Let R be a commutative graded ring with unity, S be a multiplicative subset of homogeneous elements of R and P be a graded ideal of R such that P⋂S=∅. In this article, we introduce the concept of graded S-primary ideals which is a generalization of graded primary ideals. We say that P is a graded S-primary ideal of R if there exists s∈S such that for all x,y∈h(R), if xy∈P, then sx∈P or sy∈Grad(P) (the graded radical of P). We investigate some basic properties of graded S-primary ideals.


2018 ◽  
Vol 1 (21) ◽  
pp. 415-438
Author(s):  
Amer Shamil Abdulrhman

In this paper we study covering ideals by Cosets of primary ideals and we get a generalized the primary avoidance theorem in the rings which it has been


Sign in / Sign up

Export Citation Format

Share Document