scholarly journals Counting Derangements, Non Bijective Functions and the Birthday Problem

2010 ◽  
Vol 18 (4) ◽  
pp. 197-200
Author(s):  
Cezary Kaliszyk

Counting Derangements, Non Bijective Functions and the Birthday Problem The article provides counting derangements of finite sets and counting non bijective functions. We provide a recursive formula for the number of derangements of a finite set, together with an explicit formula involving the number e. We count the number of non-one-to-one functions between to finite sets and perform a computation to give explicitely a formalization of the birthday problem. The article is an extension of [10].

1956 ◽  
Vol 21 (3) ◽  
pp. 304-308 ◽  
Author(s):  
H. G. Rice

The two results of this paper (a theorem and an example) are applications of a device described in section 1. Our notation is that of [4], with which we assume familiarity. It may be worth while to mention in particular the function Φ(n, x) which recursively enumerates the partial recursive functions of one variable, the Cantor enumerating functions J(x, y), K(x), L(x), and the classes F and Q of r.e. (recursively enumerable) and finite sets respectively.It is possible to “give” a finite set in a way which conveys the maximum amount of information; this may be called “giving explicitly”, and it requires that in addition to an effective enumeration or decision procedure for the set we give its cardinal number. It is sometimes desired to enumerate effectively an infinite class of finite sets, each given explicitly (e.g., [4] p. 360, or Dekker [1] p. 497), and we suggest here a device for doing this.We set up an effective one-to-one correspondence between the finite sets of non-negative integers and these integers themselves: the integer , corresponds to the set αi, = {a1, a2, …, an} and inversely. α0 is the empty set. Clearly i can be effectively computed from the elements of αi and its cardinal number.


Author(s):  
Joaquín Moraga

Abstract In this article, we prove a local implication of boundedness of Fano varieties. More precisely, we prove that $d$ -dimensional $a$ -log canonical singularities with standard coefficients, which admit an $\epsilon$ -plt blow-up, have minimal log discrepancies belonging to a finite set which only depends on $d,\,a$ and $\epsilon$ . This result gives a natural geometric stratification of the possible mld's in a fixed dimension by finite sets. As an application, we prove the ascending chain condition for minimal log discrepancies of exceptional singularities. We also introduce an invariant for klt singularities related to the total discrepancy of Kollár components.


1991 ◽  
Vol 56 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Seema Ahmad

Lachlan [5] has shown that it is not possible to embed the diamond lattice in the r.e. Turing degrees while preserving least and greatest elements; that is, there do not exist incomparable r.e. Turing degrees a and b such that a ∧ b = 0 and a ∨ b = 0′. Cooper [3] has compared the r.e. Turing degrees to the enumeration degrees below 0e′ and has asked if the two structures are elementarily equivalent.In this paper we show that such an embedding is possible in the Σ2enumeration degrees, which implies a negative answer to Cooper's question.Theorem. There are low enumeration degreesaandbsuch thata ∧ b = 0eanda ∨ b = 0e′.Lower case italic letters denote elements of ω while upper case italic letters denote subsets of ω. D, E and F are reserved for finite sets, and K for ′. If D = {x0, x1, …, xn} then the canonical index of D is , and the canonical index of is ∅. Dx denotes the set with canonical index x. {Wi}i∈ω is any fixed standard listing of the r.e. sets, and <·, ·> is any fixed recursive bijection from ω × ω to ω.Intuitively, A is enumeration reducible to B if there is an effective algorithm for producing an enumeration of A from any enumeration of B. There is a natural one-to-one correspondence between all such algorithms and the r.e. sets.


Author(s):  
P. Komjáth

A transversal for a set-system is a one-to-one choice function. A necessary and sufficient condition for the existence of a transversal in the case of finite sets was given by P. Hall (see [4, 3]). The corresponding condition for the case when countably many countable sets are given was conjectured by Nash-Williams and later proved by Damerell and Milner [2]. B. Bollobás and N. Varopoulos stated and proved the following measure theoretic counterpart of Hall's theorem: if (X, μ) is an atomless measure space, ℋ = {Hi: i∈I} is a family of measurable sets with finite measure, λi (i∈I) are non-negative real numbers, then we can choose a subset Ti ⊆ Hi with μ(Ti) = λi and μ(Ti ∩ Ti′) = 0 (i ≠ i′) if and only if μ({U Hi: iεJ}) ≥ Σ{λi: iεJ}: for every finite subset J of I. In this note we generalize this result giving a necessary and sufficient condition for the case when I is countable and X is the union of countably many sets of finite measure.


1976 ◽  
Vol 15 (2) ◽  
pp. 245-251
Author(s):  
Reinhard A. Razen

Let A = {ai} be a finite set of integers and let p and m denote the cardinalities of A + A = {ai+aj} and A - A {ai–aj}, respectively. In the paper relations are established between p and m; in particular, if max {ai–ai-1} = 2 those sets are characterized for which p = m holds.


1966 ◽  
Vol 27 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Tosiro Tsuzuku

1. Let Ω be a finite set of arbitrary elements and let (G, Ω) be a permutation group on Ω. (This is also simply denoted by G). Two permutation groups (G, Ω) and (G, Γ) are called isomorphic if there exist an isomorphism σ of G onto H and a one to one mapping τ of Ω onto Γ such that (g(i))τ=gσ(iτ) for g ∊ G and i∊Ω. For a subset Δ of Ω, those elements of G which leave each point of Δ individually fixed form a subgroup GΔ of G which is called a stabilizer of Δ. A subset Γ of Ω is called an orbit of GΔ if Γ is a minimal set on which each element of G induces a permutation. A permutation group (G, Ω) is called a group of rank n if G is transitive on Ω and the number of orbits of a stabilizer Ga of a ∊ Ω, is n. A group of rank 2 is nothing but a doubly transitive group and there exist a few results on structure of groups of rank 3 (cf. H. Wielandt [6], D. G. Higman M).


1995 ◽  
Vol 52 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Hong-Xun Yi

In 1976, Gross posed the question “can one find two (or possibly even one) finite sets Sj (j = 1, 2) such that any two entire functions f and g satisfying Ef(Sj) = Eg(Sj) for j = 1,2 must be identical?”, where Ef(Sj) stands for the inverse image of Sj under f. In this paper, we show that there exists a finite set S with 11 elements such that for any two non-constant meromorphic functions f and g the conditions Ef(S) = Eg(S) and Ef({∞}) = Eg({∞}) imply f ≡ g. As a special case this also answers the question posed by Gross.


1997 ◽  
Vol 11 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Ilan Adler ◽  
Sheldon M. Ross

We compute the first two moments and give a recursive formula for the generating function of the first k-record index for a sequence of independent and identically distributed random variables that take on a finite set of possible values. When the random variables have an infinite support, we bound the distribution of the index of the first k-record and show that its mean is infinite.


1977 ◽  
Vol 17 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Peter Frankl
Keyword(s):  

Let X be a finite set of cardinality n, and let F be a family of k-subsets of X. In this paper we prove the following conjecture of P. Erdös and V.T. Sós.If n > n0(k), k ≥ 4, then we can find two members F and G in F such that |F ∩ G| = 1.


2004 ◽  
Vol 69 (2) ◽  
pp. 289-295 ◽  
Author(s):  
M. I. Ostrovskii

One of the important problems of the local theory of Banach Spaces can be stated in the following way. We consider a condition on finite sets in normed spaces that makes sense for a finite set any cardinality. Suppose that the condition is such that to each set satisfying it there corresponds a constant describing “how well” the set satisfies the condition.The problem is:Suppose that a normed space X has a set of large cardinality satisfying the condition with “poor” constant. Does there exist in X a set of smaller cardinality satisfying the condition with a better constant?In the paper this problem is studied for conditions associated with one of R.C. James's characterisations of superreflexivity.


Sign in / Sign up

Export Citation Format

Share Document