Embedding the diamond in the Σ2 enumeration degrees

1991 ◽  
Vol 56 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Seema Ahmad

Lachlan [5] has shown that it is not possible to embed the diamond lattice in the r.e. Turing degrees while preserving least and greatest elements; that is, there do not exist incomparable r.e. Turing degrees a and b such that a ∧ b = 0 and a ∨ b = 0′. Cooper [3] has compared the r.e. Turing degrees to the enumeration degrees below 0e′ and has asked if the two structures are elementarily equivalent.In this paper we show that such an embedding is possible in the Σ2enumeration degrees, which implies a negative answer to Cooper's question.Theorem. There are low enumeration degreesaandbsuch thata ∧ b = 0eanda ∨ b = 0e′.Lower case italic letters denote elements of ω while upper case italic letters denote subsets of ω. D, E and F are reserved for finite sets, and K for ′. If D = {x0, x1, …, xn} then the canonical index of D is , and the canonical index of is ∅. Dx denotes the set with canonical index x. {Wi}i∈ω is any fixed standard listing of the r.e. sets, and <·, ·> is any fixed recursive bijection from ω × ω to ω.Intuitively, A is enumeration reducible to B if there is an effective algorithm for producing an enumeration of A from any enumeration of B. There is a natural one-to-one correspondence between all such algorithms and the r.e. sets.

2009 ◽  
Vol 74 (4) ◽  
pp. 1264-1272 ◽  
Author(s):  
David Diamondstone

AbstractA classical theorem in computability is that every promptly simple set can be cupped in the Turing degrees to some complete set by a low c.e. set. A related question due to A. Nies is whether every promptly simple set can be cupped by a superlow c.e. set, i.e. one whose Turing jump is truth-table reducible to the halting problem ∅′. A negative answer to this question is provided by giving an explicit construction of a promptly simple set that is not superlow cuppable. This problem relates to effective randomness and various lowness notions.


Author(s):  
P. Komjáth

A transversal for a set-system is a one-to-one choice function. A necessary and sufficient condition for the existence of a transversal in the case of finite sets was given by P. Hall (see [4, 3]). The corresponding condition for the case when countably many countable sets are given was conjectured by Nash-Williams and later proved by Damerell and Milner [2]. B. Bollobás and N. Varopoulos stated and proved the following measure theoretic counterpart of Hall's theorem: if (X, μ) is an atomless measure space, ℋ = {Hi: i∈I} is a family of measurable sets with finite measure, λi (i∈I) are non-negative real numbers, then we can choose a subset Ti ⊆ Hi with μ(Ti) = λi and μ(Ti ∩ Ti′) = 0 (i ≠ i′) if and only if μ({U Hi: iεJ}) ≥ Σ{λi: iεJ}: for every finite subset J of I. In this note we generalize this result giving a necessary and sufficient condition for the case when I is countable and X is the union of countably many sets of finite measure.


1988 ◽  
Vol 53 (3) ◽  
pp. 878-887 ◽  
Author(s):  
Kate Copestake

The structure of the Turing degrees of generic and n-generic sets has been studied fairly extensively, especially for n = 1 and n = 2. The original formulation of 1-generic set in terms of recursively enumerable sets of strings is due to D. Posner [11], and much work has since been done, particularly by C. G. Jockusch and C. T. Chong (see [5] and [6]).In the enumeration degrees (see definition below), attention has previously been restricted to generic sets and functions. J. Case used genericity for many of the results in his thesis [1]. In this paper we develop a notion of 1-generic partial function, and study the structure and characteristics of such functions in the enumeration degrees. We find that the e-degree of a 1-generic function is quasi-minimal. However, there are no e-degrees minimal in the 1-generic e-degrees, since if a 1-generic function is recursively split into finitely or infinitely many parts the resulting functions are e-independent (in the sense defined by K. McEvoy [8]) and 1-generic. This result also shows that any recursively enumerable partial ordering can be embedded below any 1-generic degree.Many results in the Turing degrees have direct parallels in the enumeration degrees. Applying the minimal Turing degree construction to the partial degrees (the e-degrees of partial functions) produces a total partial degree ae which is minimal-like; that is, all functions in degrees below ae have partial recursive extensions.


2010 ◽  
Vol 18 (4) ◽  
pp. 197-200
Author(s):  
Cezary Kaliszyk

Counting Derangements, Non Bijective Functions and the Birthday Problem The article provides counting derangements of finite sets and counting non bijective functions. We provide a recursive formula for the number of derangements of a finite set, together with an explicit formula involving the number e. We count the number of non-one-to-one functions between to finite sets and perform a computation to give explicitely a formalization of the birthday problem. The article is an extension of [10].


1966 ◽  
Vol 18 ◽  
pp. 616-620 ◽  
Author(s):  
Kenneth D. Magill

It is assumed that all topological spaces discussed in this paper are Hausdorff. By a compactification αX of a space X we mean a compact space containing X as a dense subspace. If, for some positive integer n, αX — X consists of n points, we refer to αX as an n-point compactification of X, in which case we use the notation αn X. If αX — X is countable, we refer to αX as a countable compactification of X. In this paper, the statement that a set is countable means that its elements are in one-to-one correspondence with the natural numbers. In particular, finite sets are not regarded as being countable. Those spaces with n-point compactifications were characterized in (3). From the results obtained there it followed that the only n-point compactifications of the real line are the well-known 1- and 2-point compactifications and the only n-point compactification of the Euclidean N-space, EN (N > 1), is the 1-point compactification.


1998 ◽  
Vol 174 (1) ◽  
pp. 97-120 ◽  
Author(s):  
Theodore A. Slaman ◽  
A. Sorbi

2014 ◽  
Vol 79 (3) ◽  
pp. 676-692 ◽  
Author(s):  
GEORGE BARMPALIAS ◽  
ROD G. DOWNEY

AbstractTheK-trivial sets form an ideal in the Turing degrees, which is generated by its computably enumerable (c.e.) members and has an exact pair below the degree of the halting problem. The question of whether it has an exact pair in the c.e. degrees was first raised in [22, Question 4.2] and later in [25, Problem 5.5.8].We give a negative answer to this question. In fact, we show the following stronger statement in the c.e. degrees. There exists aK-trivial degreedsuch that for all degreesa, bwhich are notK-trivial anda > d, b > dthere exists a degreevwhich is notK-trivial anda > v, b > v. This work sheds light to the question of the definability of theK-trivial degrees in the c.e. degrees.


2004 ◽  
Vol 69 (2) ◽  
pp. 555-584 ◽  
Author(s):  
Joseph S. Miller

Abstract.We show that the Turing degrees are not sufficient to measure the complexity of continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We introduce the continuous degrees and prove that they are a proper extension of the Turing degrees and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing degrees non-total. Several fundamental results are proved: a continuous function with non-total degree has no least degree representation, settling a question asked by Pour-El and Lempp; every non-computable f ∈ [0,1] computes a non-computable subset of ℕ there is a non-total degree between Turing degrees a <Tb iff b is a PA degree relative to a; ⊆ 2ℕ is a Scott set iff it is the collection of f-computable subsets of ℕ for some f ∈ [0,1] of non-total degree; and there are computably incomparable f, g ∈ [0,1] which compute exactly the same subsets of ℕ. Proofs draw from classical analysis and constructive analysis as well as from computability theory.


1982 ◽  
Vol 47 (4) ◽  
pp. 854-859 ◽  
Author(s):  
S. B. Cooper

A notion of relative reducibility for partial functions, which coincides with Turing reducibility on the total functions, was first given by S.C. Kleene in Introduction to metamathematics [4]. Following Myhill [7], this was made more explicit in Hartley Rogers, Jr., Theory of recursive functions and effective computability [8, pp. 146, 279], where some basic properties of the partial degrees or (equivalent, but notationally more convenient) the enumeration degrees, were derived. The question of density of this proper extension of the degrees of unsolvability was left open, although Medvedev's result [6] that there are quasi-minimal partial degrees (that is, nonrecursive partial degrees with no nonrecursive total predecessors) is proved.In 1971, Sasso [9] introduced a finer notion of partial degree, which also contained the Turing degrees as a proper substructure (intuitively, Sasso's notion of reducibility between partial functions differed from Rogers' in that computations terminated when the oracle was asked for an undefined value, whereas a Rogers computation could be thought of as proceeding simultaneously along a number of different branches of a ‘consistent’ computation tree—cf. Sasso [10]). His construction of minimal ‘partial degrees’ [11], while of interest in itself, left open the analogous problem for the more standard partial degree structure.


1985 ◽  
Vol 50 (4) ◽  
pp. 983-1001 ◽  
Author(s):  
Kevin McEvoy ◽  
S. Barry Cooper

For sets of natural numbers A and B, A is enumeration reducible to B if there is some effective algorithm which when given any enumeration of B will produce an enumeration of A. Gutteridge [5] has shown that in the upper semilattice of the enumeration degrees there are no minimal degrees (see Cooper [3]), and in this paper we study those pairs of degrees with gib 0. Case [1] constructed a minimal pair. This minimal pair construction can be relativised to any gib, and following a suggestion of Jockusch we can also fix one of the degrees and still construct the pair. These methods yield an easier proof of Case's exact pair theorem for countable ideals. 0″ is an upper bound for the minimal pair constructed in §1, and in §2 we improve this bound to any Σ2-high Δ2 degree. In contrast to this we show that every low degree c bounds a degree a which is not in any minimal pair bounded by c. The structure of the co-r.e. e-degrees is isomorphic to that of the r.e. Turing degrees, and Gutteridge has constructed co-r.e. degrees which form a minimal pair in the e-degrees. In §3 we show that if a, b is any minimal pair of co-r.e. degrees such that a is low then a, b is a minimal pair in the e-degrees (and so Gutteridge's result follows). As a corollary of this we can embed any countable distributive lattice and the two nondistributive five-element lattices in the e-degrees below 0′. However the lowness assumption is necessary, as we also prove that there is a minimal pair of (high) r.e. degrees which is not a minimal pair in the e-degrees (under the isomorphism). In §4 we present more concise proofs of some unpublished work of Lagemann on bounding incomparable pairs and embedding partial orderings.As usual, {Wi}i ∈ ω is the standard listing of the recursively enumerable sets, Du is the finite set with canonical index u and {‹ m, n ›}m, n ∈ ω is a recursive, one-to-one coding of the pairs of numbers onto the numbers. Capital italic letters will be variables over sets of natural numbers, and lower case boldface letters from the beginning of the alphabet will vary over degrees.


Sign in / Sign up

Export Citation Format

Share Document