scholarly journals Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph

2012 ◽  
Vol 20 (2) ◽  
pp. 161-174 ◽  
Author(s):  
Piotr Rudnicki ◽  
Lorna Stewart

Summary Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested to formalize simple graphs using simplicial complexes. We have developed basic terminology for simple graphs as at most 1-dimensional complexes. We formalize this new setting and then reprove Mycielski’s [12] construction resulting in a triangle-free graph with arbitrarily large chromatic number. A different formalization of similar material is in [15].

2019 ◽  
Vol 62 (1) ◽  
pp. 23-35
Author(s):  
Wouter Cames van Batenburg ◽  
Ross J. Kang

AbstractLet $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$, and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$. Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the line graphs $L$ of simple graphs of maximum degree at most $d$, we prove that $\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$ for $\unicode[STIX]{x1D714}\in \{3,4\}$. For $\unicode[STIX]{x1D714}=3$, this implies the sharp bound $\unicode[STIX]{x1D712}(G^{2})\leqslant 10$. For $\unicode[STIX]{x1D714}=4$, this implies $\unicode[STIX]{x1D712}(G^{2})\leqslant 22$, which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil.


2019 ◽  
Vol 76 ◽  
pp. 53-61 ◽  
Author(s):  
Maria Chudnovsky ◽  
Alex Scott ◽  
Paul Seymour

1976 ◽  
Vol 28 (6) ◽  
pp. 1340-1344 ◽  
Author(s):  
Béla Bollobás ◽  
Norbert Sauer

Tutte [1], writing under a pseudonym, was the first to prove that a graph with a large chromatic number need not contain a triangle. The result was rediscovered by Zykov [5] and Mycielski [4]. Erdös [2] proved the much stronger result that for every k ≧ 2 and g there exist a k-chromatic graph whose girth is at least g.


10.37236/1381 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Stephan Brandt ◽  
Tomaž Pisanski

The core is the unique homorphically minimal subgraph of a graph. A triangle-free graph with minimum degree $\delta > n/3$ is called dense. It was observed by many authors that dense triangle-free graphs share strong structural properties and that the natural way to describe the structure of these graphs is in terms of graph homomorphisms. One infinite sequence of cores of dense maximal triangle-free graphs was known. All graphs in this sequence are 3-colourable. Only two additional cores with chromatic number 4 were known. We show that the additional graphs are the initial terms of a second infinite sequence of cores.


2020 ◽  
Vol 140 ◽  
pp. 84-97 ◽  
Author(s):  
Maria Chudnovsky ◽  
Alex Scott ◽  
Paul Seymour ◽  
Sophie Spirkl

1986 ◽  
Vol 100 (2) ◽  
pp. 303-317 ◽  
Author(s):  
A. G. Chetwynd ◽  
A. J. W. Hilton

The graphs we consider here are either simple graphs, that is they have no loops or multiple edges, or are multigraphs, that is they may have more than one edge joining a pair of vertices, but again have no loops. In particular we shall consider a special kind of multigraph, called a star-multigraph: this is a multigraph which contains a vertex v*, called the star-centre, which is incident with each non-simple edge. An edge-colouring of a multigraph G is a map ø: E(G)→, where is a set of colours and E(G) is the set of edges of G, such that no two edges receiving the same colour have a vertex in common. The chromatic index, or edge-chromatic numberχ′(G) of G is the least value of || for which an edge-colouring of G exists. Generalizing a well-known theorem of Vizing [14], we showed in [6] that, for a star-multigraph G,where Δ(G) denotes the maximum degree (that is, the maximum number of edges incident with a vertex) of G. Star-multigraphs for which χ′(G) = Δ(G) are said to be Class 1, and otherwise they are Class 2.


2014 ◽  
Vol 105 ◽  
pp. 6-10 ◽  
Author(s):  
Arkadiusz Pawlik ◽  
Jakub Kozik ◽  
Tomasz Krawczyk ◽  
Michał Lasoń ◽  
Piotr Micek ◽  
...  

10.37236/6768 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Alex Scott ◽  
Paul Seymour

We prove that for all integers $\kappa, s\ge 0$ there exists $c$ with the following property. Let $G$ be a graph with clique number at most $\kappa$ and chromatic number more than $c$. Then for every vertex-colouring (not necessarily optimal) of $G$, some induced subgraph of $G$ is an $s$-vertex path, and all its vertices have different colours. This extends a recent result of Gyárfás and Sárközy (2016) who proved the same for graphs $G$ with $\kappa=2$ and girth at least five.


Sign in / Sign up

Export Citation Format

Share Document