scholarly journals Heat transfer through the regular polyhedrons with asymmetric boundary conditions

2012 ◽  
Vol 33 (3) ◽  
pp. 117-125
Author(s):  
Ewa Pelińska-Olko

Abstract During heat transport through the walls of a hollow sphere, the heat stream can achieve extreme values. The same processes occur in regular polyhedrons. We can calculate the maximum heat transfer rate, the so-called critical heat transfer rate. We must assume here identical conditions of heat exchange on all internal and external walls of a regular polyhedron. The transfer rate of heat penetrating through the regular polyhedron with different heat transfer coefficients on the walls is called the heat transfer rate with asymmetric boundary conditions. We show that the heat transfer rate in this case will grow up if we replace those coefficients with their average values.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3711
Author(s):  
Asifa ◽  
Talha Anwar ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Kanokwan Sitthithakerngkiet

In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.


1970 ◽  
Vol 92 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Charles D. Jones ◽  
Lester F. Smith

Experimental average heat-transfer coefficients for free-convection cooling of arrays of isothermal fins on horizontal surfaces over a wider range of spacings than previously available are reported. A simplified correlation is presented and a previously available correlation is questioned. An optimum arrangement for maximum heat transfer and a preliminary design method are suggested, including weight considerations.


Author(s):  
M. Favre-Marinet ◽  
S. Le Person ◽  
A. Bejan

Experimental investigations of the flow and the associated heat transfer were conducted in two-dimensional microchannels in order to test possible size effects on the laws of hydrodynamics and heat transfer and to infer optimal conditions of use from the measurements. The test section was designed to modify easily the channel height e between 1 mm and 0.1 mm. Measurements of the overall friction factor and local Nusselt numbers show that the classical laws of hydrodynamics and heat transfer are verified for e > 0.4 mm. For lower values of e, a significant decrease of the Nusselt number is observed, whereas the Poiseuille number continues to have the conventional value of laminar developed flow. The transition to turbulence is not affected by the channel size. For fixed pressure drop across the channel, a maximum of heat transfer rate density is found for a particular value of e. The corresponding dimensionless optimal spacing and heat transfer rate density are in very good agreement with the predictions of Bejan and Sciubba (1992). This paper is the first time that the optimal spacing between parallel plates is determined experimentally.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
R. Karvinen ◽  
T. Karvinen

A method and practical results are presented for finding the geometries of fixed volume plate fins for maximizing dissipated heat flux. The heat transfer theory used in optimization is based on approximate analytical solutions of conjugated heat transfer, which couple conduction in the fin and convection from the fluid. Nondimensional variables have been found that contain thermal and geometrical properties of the fins and the flow, and these variables have a fixed value at the optimum point. The values are given for rectangular, convex parabolic, triangular, and concave parabolic fin shapes for natural and forced convection including laminar and turbulent boundary layers. An essential conclusion is that it is not necessary to evaluate the convection heat transfer coefficients because convection is already included in these variables when the flow type is specified. Easy-to-use design rules are presented for finding the geometries of fixed volume fins that give the maximum heat transfer. A comparison between the heat transfer capacities of different fins is also discussed.


Sign in / Sign up

Export Citation Format

Share Document