Application of Time-Frequency Analysis for Diagnostics of Valve Plate Wear in Axial-Piston Pump

2010 ◽  
Vol 57 (3) ◽  
Author(s):  
Jerzy Stojek
AIP Advances ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 115221
Author(s):  
Jihai Jiang ◽  
Boran Du ◽  
Jian Zhang ◽  
Geqiang Li

Author(s):  
Gianluca Marinaro ◽  
Emma Frosina ◽  
Kim Stelson ◽  
Adolfo Senatore

Abstract This research presents a lumped parameter numerical model aimed at designing and optimizing an axial piston pump. For the first time, it has been shown that a lumped parameter model can accurately model axial piston pump dynamics based on a comparison with CFD models and experimental results. Since the method is much more efficient than CFD, it can optimize the design. Both steady-state and dynamic behaviors have been analyzed. The model results have been compared with experimental data, showing a good capacity in predicting the pump performance, including pressure ripple. The swashplate dynamics have been investigated experimentally, measuring the dynamic pressure which controls the pump displacement; a comparison with the numerical model results confirmed the high accuracy. An optimization process has been conducted on the valve plate geometry to control fluid-born noise by flow ripple reduction. The NLPQL algorithm is used since it is suitable for this study. The objective function to minimize is the well-known function, the Non-Uniformity Grade, a parameter directly correlated with flow ripple. A prototype of the best design has been realized and tested, confirming a reduction in the pressure ripple. An endurance test was also conducted. As predicted from the numerical model, a significant reduction of cavitation erosion was observed.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6576
Author(s):  
Shengnan Tang ◽  
Shouqi Yuan ◽  
Yong Zhu ◽  
Guangpeng Li

A hydraulic axial piston pump is the essential component of a hydraulic transmission system and plays a key role in modern industry. Considering varying working conditions and the implicity of frequent faults, it is difficult to accurately monitor the machinery faults in the actual operating process by using current fault diagnosis methods. Hence, it is urgent and significant to investigate effective and precise fault diagnosis approaches for pumps. Owing to the advantages of intelligent fault diagnosis methods in big data processing, methods based on deep learning have accomplished admirable performance for fault diagnosis of rotating machinery. The prevailing convolutional neural network (CNN) displays desirable automatic learning ability. Therefore, an integrated intelligent fault diagnosis method is proposed based on CNN and continuous wavelet transform (CWT), combining the feature extraction and classification. Firstly, CWT is used to convert the raw vibration signals into time-frequency representations and achieve the extraction of image features. Secondly, a new framework of deep CNN is established via designing the convolutional layers and sub-sampling layers. The learning process and results are visualized by t-distributed stochastic neighbor embedding (t-SNE). The results of the experiment present a higher classification accuracy compared with other models. It is demonstrated that the proposed approach is effective and stable for fault diagnosis of a hydraulic axial piston pump.


Author(s):  
San Seong Lee ◽  
◽  
Won Jee Chung ◽  
Dong Jae Lim ◽  
Tae Hyung Cha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document