piston pump
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 189)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Qun Chao ◽  
Xiaoliang Wei ◽  
Junbo Lei ◽  
Jianfeng Tao ◽  
Cheng-Liang Liu

Abstract Vibration signal is a good indicator of cavitation in axial piston pumps. Some vibration-based machine learning methods have been developed for recognizing the pump cavitation. However, their fault diagnostic performance is often unsatisfactory in industrial applications due to the sensitivity of the vibration signal to noise. In this paper, we presented an intelligent method to recognize the cavitation severity of an axial piston pump under noisy environment. First, we adopted short-time Fourier transformation to convert the raw vibration data into spectrograms that acted as input images of a modified LeNet-5 convolutional neural network (CNN). Second, we proposed a denoising method for the converted spectrograms based on frequency spectrum characteristics. Finally, we verified the proposed method on the dataset from a test rig of high-speed axial piston pump. The experimental results indicate that the denoising method significantly improves the diagnostic performance of the CNN model under noisy environment. For example, the accuracy rate of the cavitation recognition increases from 0.52 to 0.92 at SNR of 4 dB by the denoising method.


Author(s):  
Qian Cheng ◽  
Yinshui Liu ◽  
Zhenyao Wang ◽  
Defa Wu ◽  
Yunxiang Ma

For ultrahigh-pressure piston pumps, in the reciprocating action of the piston, the fretting between the static face seal and the mating surface occurs with the change of the pressure in the piston chamber. This phenomenon will seriously affect the service life of the seal ring and lead to the failure of the pump. However, the failure of static seals used to seal ultrahigh-pressures is usually studied from the directions of shear, stress, or rubber material. These studies cannot explain the failure phenomenon of the sealing ring found in our experiment. This paper analyzed the failure of the face seal ring in a piston pump with a maximum pressure of 120 MPa. A two-dimensional axisymmetric finite element model was established based on the Mooney-Rivlin constitutive relation of the rubber material, and the fretting conditions of the sealing ring were analyzed. Combined with the wear scars observed by the scanning electron microscope the face seal ring’s dynamic failure mechanism on the ultrahigh-pressure piston pump was determined. A better sealing scheme was proposed and verified by the duration test of the pump, which provided a basis for the design of the sealing of the ultrahigh-pressure fluid with high-frequency fluctuations.


Author(s):  
Qun Chao ◽  
Zi Xu ◽  
Jianfeng Tao ◽  
Chengliang Liu ◽  
Jiang Zhai

The axial piston pump in aerospace applications needs to operate over a wide range of fluid temperatures from −54°C to 135 °C. The fluid properties at such extreme temperatures will significantly affect the cavitation that is one of the major limiting factors for the efficiency and reliability of aviation axial piston pumps. However, it appears that very little of the existing literature studies the effects of extreme fluid temperatures on the pump cavitation. This paper aims to examine the temperature effects on the cavitation in an aviation axial piston pump. First, we develop a three-dimensional (3D) transient computational fluid dynamics (CFD) model to investigate the pump cavitation and validate it experimentally. Second, we use the validated CFD model to investigate the temperature effects on the pump cavitation by changing the fluid properties including viscosity, density, and bulk modulus. The numerical results show that low fluid temperature makes the aviation axial piston pump suffer serious cavitation due to high viscosity, leading to delivery flow breakdown, unacceptable pressure pulsation, and delayed pressure built up. In contrast, high fluid temperatures have minor effects on the cavitation although they increase the pressure pulsation and built-up time slightly.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 392
Author(s):  
Chenchen Zhang ◽  
Chenhang Zhu ◽  
Bin Meng ◽  
Sheng Li

As a core power component, aviation piston pumps are widely used in aircraft hydraulic systems. The piston pump’s power-to-weight ratio is extremely crucial in the aviation industry, and the “ceiling effect” of the PV value (product of compressive stress and linear velocity) limits the piston pump’s ability to increase working pressure. Therefore, increasing the piston pump’s speed has been a real breakthrough in terms of further enhancing the power-to-weight ratio. However, the piston pump’s design faces several challenges under the extreme operating conditions at high speeds. This study reviews several problems aviation axial piston pumps face under high-speed operating conditions, including friction loss, cavitation, cylinder overturning, flow pressure pulsation, and noise. It provides a detailed description of the research state of the art of these problems and potential solutions. The axial piston pump’s inherent sliding friction pair, according to the report, considerably restricts further increasing of its speed and power-to-weight ratio. With its mature technology and deep research base, the axial piston pump will continue to dominate the aviation pumps. Furthermore, breaking the limitation of the sliding friction pair on speed and power density, thus innovating a novel structure of the piston pump, is also crucial. Therefore, this study also elaborates on the working principle and development process of the two-dimensional (2D) piston pump, which is a representative of current high-speed pump structure innovation.


Author(s):  
Heyuan Wang ◽  
Chuan Ding ◽  
Yu Huang ◽  
Sheng Li ◽  
Jian Ruan

A new type of two-dimensional (2D) piston pump with a stacked cone roller set was introduced to eliminate the influence of the gap between the guiding rail and the cone roller. First, the structure and working principle of the 2D piston pump were studied; then, a corresponding mathematical model which considered the oil viscosity and oil churning loss caused by the rotation of the guiding rail in the enclosed chamber was established to examine the volumetric and mechanical efficiency of the 2D piston pump. The effects of different speeds, load pressures, and rolling friction coefficients between the guiding rail and the cone rollers on the efficiency were considered. During the test, when the speed was 6000 r/min and the load pressure was 6 MPa and 8 MPa, the volumetric efficiency reached 98.3% and 96.8%, respectively, basically consistent with the theoretical analysis. Because the temperature rise of the tested pump caused the oil viscosity and the eccentricity of the piston and piston rings increased the leakage, the test result was slightly lower than that of the theoretical analysis. When the speed was 1000 r/min and the load pressure was 5 MPa, the mechanical efficiency was 69.3%, and the mechanical efficiency model was consistent with the test results. However, with the increase in speed and load pressure, the difference between the test results and theoretical analysis results increased because the supporting force of the cone roller on the guiding rail increased, increasing the rolling frictional losses.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jiahai Huang ◽  
Zhenhua Dou ◽  
Zhenglei Wang ◽  
Long Quan ◽  
Linkai Niu

AbstractThe tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump. The effect of materials and heat treatment on friction and wear properties has been studied in depth. Engineering experiences show that the speed and load also affect the tribological properties, but these have not been systematically analyzed. The purpose of this paper is to evaluate the tribological properties of the commonly used materials (CuPb15Sn5 and 38CrMoAl/42CrMo) for cylinder block/valve plate with different heat treatment and contact pressure at different speed. During the test, tribometer is used to simulate the contact pattern between the valve plate/cylinder block in axial piston pump, the friction coefficient, wear rate and surface topography are analyzed to evaluate the tribological properties of different types of friction samples at different speed. Results indicate that: (1) contact surface of the samples at 1800 r/min is more prone to adhesive wear than those at 500 r/min; (2) in the terms of wear resistance, quench-tempered and nitrided 38CrMoAl (38CrMoAl QTN for short) is better than quench-tempered and nitrided 42CrMo, although they are all commonly used materials in the axial piston pump; (3) 2.5 MPa is the critical contact pressure of the interface between valve plate made of 38CrMoAl QTN and cylinder block made of CuPb15Sn5 on the tribometer, which implies the pressure bearing area at the bottom of the cylinder block should be carefully designed; (4) the valve plate/cylinder block made of 38CrMoAl QTN/CuPb15Sn5 exhibits good tribological properties in a real axial piston pump. This research is useful for the failure analysis and structural optimization design of the valve plates/cylinder block.


2021 ◽  
Vol 183 ◽  
pp. 108336
Author(s):  
Yong Zhu ◽  
Guangpeng Li ◽  
Rui Wang ◽  
Shengnan Tang ◽  
Hong Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document