axial piston pump
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 110)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Qun Chao ◽  
Xiaoliang Wei ◽  
Junbo Lei ◽  
Jianfeng Tao ◽  
Cheng-Liang Liu

Abstract Vibration signal is a good indicator of cavitation in axial piston pumps. Some vibration-based machine learning methods have been developed for recognizing the pump cavitation. However, their fault diagnostic performance is often unsatisfactory in industrial applications due to the sensitivity of the vibration signal to noise. In this paper, we presented an intelligent method to recognize the cavitation severity of an axial piston pump under noisy environment. First, we adopted short-time Fourier transformation to convert the raw vibration data into spectrograms that acted as input images of a modified LeNet-5 convolutional neural network (CNN). Second, we proposed a denoising method for the converted spectrograms based on frequency spectrum characteristics. Finally, we verified the proposed method on the dataset from a test rig of high-speed axial piston pump. The experimental results indicate that the denoising method significantly improves the diagnostic performance of the CNN model under noisy environment. For example, the accuracy rate of the cavitation recognition increases from 0.52 to 0.92 at SNR of 4 dB by the denoising method.


Author(s):  
Qun Chao ◽  
Zi Xu ◽  
Jianfeng Tao ◽  
Chengliang Liu ◽  
Jiang Zhai

The axial piston pump in aerospace applications needs to operate over a wide range of fluid temperatures from −54°C to 135 °C. The fluid properties at such extreme temperatures will significantly affect the cavitation that is one of the major limiting factors for the efficiency and reliability of aviation axial piston pumps. However, it appears that very little of the existing literature studies the effects of extreme fluid temperatures on the pump cavitation. This paper aims to examine the temperature effects on the cavitation in an aviation axial piston pump. First, we develop a three-dimensional (3D) transient computational fluid dynamics (CFD) model to investigate the pump cavitation and validate it experimentally. Second, we use the validated CFD model to investigate the temperature effects on the pump cavitation by changing the fluid properties including viscosity, density, and bulk modulus. The numerical results show that low fluid temperature makes the aviation axial piston pump suffer serious cavitation due to high viscosity, leading to delivery flow breakdown, unacceptable pressure pulsation, and delayed pressure built up. In contrast, high fluid temperatures have minor effects on the cavitation although they increase the pressure pulsation and built-up time slightly.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jiahai Huang ◽  
Zhenhua Dou ◽  
Zhenglei Wang ◽  
Long Quan ◽  
Linkai Niu

AbstractThe tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump. The effect of materials and heat treatment on friction and wear properties has been studied in depth. Engineering experiences show that the speed and load also affect the tribological properties, but these have not been systematically analyzed. The purpose of this paper is to evaluate the tribological properties of the commonly used materials (CuPb15Sn5 and 38CrMoAl/42CrMo) for cylinder block/valve plate with different heat treatment and contact pressure at different speed. During the test, tribometer is used to simulate the contact pattern between the valve plate/cylinder block in axial piston pump, the friction coefficient, wear rate and surface topography are analyzed to evaluate the tribological properties of different types of friction samples at different speed. Results indicate that: (1) contact surface of the samples at 1800 r/min is more prone to adhesive wear than those at 500 r/min; (2) in the terms of wear resistance, quench-tempered and nitrided 38CrMoAl (38CrMoAl QTN for short) is better than quench-tempered and nitrided 42CrMo, although they are all commonly used materials in the axial piston pump; (3) 2.5 MPa is the critical contact pressure of the interface between valve plate made of 38CrMoAl QTN and cylinder block made of CuPb15Sn5 on the tribometer, which implies the pressure bearing area at the bottom of the cylinder block should be carefully designed; (4) the valve plate/cylinder block made of 38CrMoAl QTN/CuPb15Sn5 exhibits good tribological properties in a real axial piston pump. This research is useful for the failure analysis and structural optimization design of the valve plates/cylinder block.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012008
Author(s):  
Želimir Husnić ◽  
Remzo Dedić ◽  
Faris Ustamujić ◽  
Zlata Jelačić

Abstract The axial piston pump for aircraft hydraulics systems and other high pressure hydraulic system applications is presented. This paper discusses the pump’s pressure pulsation and the fundamental frequency. Pressure pulsation associated with single piston failure is explained in relation to its fundamental frequency. A predictive approach in maintenance and pump sub system health monitoring is proposed, using numerical modelling and applicable software.


Sign in / Sign up

Export Citation Format

Share Document