scholarly journals Digital core. Integration of carbonate rocks thin section stuDies with results of routine core tests

Author(s):  
S.A. Idrisova ◽  
◽  
M.A. Tugarova ◽  
E.V. Stremichev ◽  
B.V. Belozerov ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
pp. 1151-1167
Author(s):  
Waheed Ali Abro ◽  
Abdul Majeed Shar ◽  
Kun Sang Lee ◽  
Asad Ali Narejo

Abstract Carbonate rocks are believed to be proven hydrocarbon reservoirs and are found in various basins of Pakistan including Lower Indus Basin. The carbonate rock intervals of the Jakkher Group from Paleocene to Oligocene age are distributed in south-western part of Lower Indus Basin of Pakistan. However, there are limited published petrophysical data sets on these carbonate rocks and are essential for field development and risk reduction. To fill this knowledge gap, this study is mainly established to collect the comprehensive high quality data sets on petrophysical properties of carbonate rocks along with their mineralogy and microstructure. Additionally, the study assesses the impact of diagenesis on quality of the unconventional tight carbonate resources. Experimental techniques include Scanning Electronic Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and X-ray diffraction (XRD), photomicrography, Helium porosity and steady state gas permeability. Results revealed that the porosity was in range of 2.12 to 8.5% with an average value of 4.5% and the permeability was ranging from 0.013 to 5.8mD. Thin section study, SEM-EDS, and XRD analyses revealed that the samples mostly contain carbon (C), calcium (Ca), and magnesium (Mg) as dominant elemental components.The main carbonate components observed were calcite, dolomite, micrite, Ferron mud, bioclasts and intermixes of clay minerals and cementing materials. The analysis shows that: 1) the permeability and porosity cross plot, the permeability and slippage factor values cross plots appears to be scattered, which showed weaker correlation that was the reflection of carbonate rock heterogeneity. 2) The permeability and clay mineralogy cross plots have resulted in poor correlation in these carbonate samples. 3) Several diagenetic processes had influenced the quality of carbonates of Jakkher Group, such as pore dissolution, calcification, cementation, and compaction. 4) Reservoir quality was mainly affected by inter-mixing of clay, cementation, presence of micrite muds, grain compactions, and overburden stresses that all lead these carbonate reservoirs to ultra-tight reservoirs and are considered to be of very poor quality. 5) SEM and thin section observations shows incidence of micro-fractures and pore dissolution tended to improve reservoir quality.


1986 ◽  
Vol 8 (4) ◽  
pp. 369-380 ◽  
Author(s):  
George V. Chilingarian ◽  
Chum Yang Zhang ◽  
Moayed Yusif Al-Bassam ◽  
Teh Fu Yen

2020 ◽  
Vol 53 (2C) ◽  
pp. 34-55
Author(s):  
Yahya Tawfeeq

The digital core analysis of petrophysical properties replace the use of conventional core analysis by reducing the required time for investigation. Also, the ability to capture pore geometries and fluid behavior at the pore-scale improves the understanding of complex reservoir structures. In this work, 53 samples of 2D thin section petrographic images were used for analyses from the core plugs taken from the Buzurgan oil field. Each sample was impregnated with blue-dyed epoxy, thin sectioned and then was stained for discrimination of carbonate minerals. Each thin section has been described in detail and illustrated by photomicrographs. The studied samples include a variety of rock types. Packstone is the most common rock type observed followed by grainstone and packstone – wackestone. Floatstone and dolostone are noted rarely in the studied interval. However, the samples of thin section images are processed and digitized, utilizing MATLAB programming and image analysis software. The entire workflow of digital core analysis from image segmentation to petrophysical rock properties determination was performed. A focused has been made on determining effective and total porosity, absolute permeability, and irreducible water saturation. Absolute permeability is estimated with the Kozeny-Carman permeability correlation model and Timur-Coates permeability correlation model. Irreducible water saturation simply is derived from total and effective porosity. Also, some pore void characteristics, such as area and perimeter, were calculated. The results of Digital 2D image analysis have been compared to laboratory core measurements to investigate the reliability and restrictions of the digital image interpretation techniques.


2018 ◽  
Vol 159 ◽  
pp. 01040
Author(s):  
Tri Winarno ◽  
Jenian Marin ◽  
Ilham Hani Pratama ◽  
Anis Kurniasih

The research area is a part of South Serayu Mountain zone, specifically Bregada Kulon Progo. The Bregada Kulon Progo is a product of volcanic activity in the past, which can be seen by the volcanic rock called Old Andesite Formation. The end of the volcanic activity is characterized by the deposition of carbonate rocks which were part of Jonggrangan Formation and Sentolo Formation. The lower part of Sentolo Formation is composed by the mix of carbonate and volcanic materials. The research is carried out by two methods. The first is field method, which is implemented by geological mapping and rock sampling. The second is laboratory method, which is implemented by petrographic method. The petrographic method is implemented by making thin section of the rocks, then observing the thin section with polarization microscope to determine the composition of the rocks. The rock samples are mainly from the lower and middle part of Sentolo Formation, which probably still got the influence of volcanic activity. The benefit of the research is knowing the influence of volcanic activity in the carbonate rocks of Sentolo Formation. The presence of volcanic materials in the lower part of Sentolo Formation, can be predicted by two processes. First, the volcanic activity supplied those materials directly, and second, from the rework of the volcanic materials then mixed with carbonat materials of Sentolo Formation.


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document