scholarly journals DEVELOPMENT OF AN INTERACTIVE ONLINE ETHICS SCENARIO ACTIVITY FOR ENGINEERING STUDENTS

Author(s):  
Peter M. Ostafichuk ◽  
Carol P. Jaeger ◽  
Jonathan Nakane

This paper describes development and deployment of an online interactive ethical decision-making simulation.  This tool was piloted in a first-year introduction to engineering course at the University of British Columbia.  It used a “choose your own adventure” style of decision-making and narrative to add realism and engagement to what was otherwise viewed by students as dry, uninteresting content.  After storyboarding using sticky notes and Visio, the final tool used by students was implemented and deployed using a survey tool (Qualtrics). It featured a scenario with initially incomplete information and the appearance of unethical behaviour by others.  It included decision-based branching, but also randomization such that different groups had the story unfold differently, even if they made the same initial decisions.  Student feedback on this tool was very positive, suggesting this style of interactive online ethics simulation could be an effective tool for enhancing engagement and learning.

2021 ◽  
Author(s):  
Joshua Reed ◽  
Scott Streiner ◽  
Daniel Burkey ◽  
Richard Cimino ◽  
Jennifer Pascal ◽  
...  

Author(s):  
Peter M. Ostafichuk ◽  
Carol P. Jaeger ◽  
Agnes D’Entremont

  Abstract This paper explores the student experience of discipline selection, through the perspective of students in a common first year engineering program at the University of British Columbia. It also presents and examines a number of new innovations have been introduced to the UBC curriculum to support students in this regard. In general, there is limited information in the literature about how and when engineering students decide on their specific engineering discipline. What seems to be clear though is that many, if not most, students come into common first year engineering programs with a good idea (if not a decision) of what their specialization will be. In addition, short-term factors (such as courses and program experiences) dominate decision-making rather than long-term factors (such as career potential).  The innovations we have introduced include program introduction videos, various online tools and resources, coordinated in-class presentations, program fairs, and more. Through a number of surveys to different cohorts of engineering students at UBC, several clear and encouraging trends have emerged. Most of our students report feeling well-prepared to choose their discipline by the end of first year; most students are not choosing their discipline until Term 2, after they have received information and presentations from all programs (having this time to gather information and decide is a key motivation behind a common first year); and most students report finding the new resources we are providing (online materials and tools, videos, Program Fairs, etc.) useful in their decision-making. Consistent with the literature, short-term considerations appear to dominate our students’ decision-making, although there are indications that longer-term career considerations are also starting to influence their information gathering. Having opportunities to speak to current and former students in a discipline was cited by our students as the most important information source in their decision-making. Also important was information provided by programs, both within our coordinated introduction to engineering course, and through websites and other program materials.  


Author(s):  
Carol P. Jaeger ◽  
Peter M. Ostafichuk

Abstract A module on professionalism and ethics was developed and introduced in a recent redesign of the first year engineering curriculum at The University of British Columbia (UBC). Motivating factors for including this content in first year included providing students with a fuller understanding of the engineering profession, introducing content to support student development in multiple Canadian Engineering Accreditation Board (CEAB) graduate attributes, and providing education and support for students in the responsible use of peer review.  Additionally, feedback from senior engineering students indicated that students would benefit from inclusion of professionalism and ethics content earlier in the curriculum. In this paper, the structure and content of the module specifically related to ethics will be described, student feedback for the module will be presented, and key learnings will be discussed.


Author(s):  
Stephen Mattucci ◽  
Jim Sibley ◽  
Jonathan Nakane ◽  
Peter Ostafichuk

Abstract – Giving and receiving feedback is a necessary, but often difficult skill for young engineers to acquire. We developed and piloted the delivery of a feedback model as part of the first-year engineering experience at the University of British Columbia. The approach is based on recognizing feedback as a form of professional communication, and that it requires practice to improve. We wove different aspects of communication skill development through two large newly-designed first-year introduction to engineering courses, building towards face-to-face feedback through a staged series of communication experiences. The full feedback model highlighted the nuances of face-to-face communication, and was called the "3×3", since it includes the three components involved in face-to-face feedback (sender, message, and receiver), each with three associated aspects. The sender uses appropriate words and body language, ensures proper interpretation, and is empathetic; the message is objective and non-judgmental, sufficiently detailed, and contains suggestions for improvement; and the receiver remains open and listening, acknowledges to the sender that they are listening, and clarifies to ensure understanding. Students applied what they had learned through an activity reviewing poster presentations from a major course design project. In the activity, they each had an opportunity to craft a feedback message before delivering the message face-to-face to a peer. Students then reflected on the feedback they received by summarizing the message, recognizing how the sender delivered the feedback, and identifying why the feedback was helpful. Student reflections were analyzed for themes from the 3×3 model. Students found feedback from peers particularly helpful when it was delivered in an appropriate and courteous manner, checked for proper interpretation, provided clear suggestions for improvement, and was coupled with praise of something that was done well. Providing students with a structured model allows them to follow a process in both providing effective face-to-face feedback, but also better appreciate why receiving feedback is beneficial in helping them improve.  


Author(s):  
Monique Frize ◽  
Irena Zamboni

To be ethical and professional are terms that are synonymous with being an engineer. The work of engineers frequently affects public safety and health, and can influence business, and even politics. Professional Engineering Associations provide ethical guidelines so that engineers will know how to avoid misconduct, negligence, incompetence, and corruption, which could lead to formal complaints and discipline. Knowledge about ethical decision-making guides engineers facing complex and difficult moral dilemmas (Andrews, 2005, pp. 46). Biomedical engineers doing research and development will undoubtedly be involved in projects that impact humans and/or animals, and thus must be informed on all aspects of ethics that guide such research. They should be particularly aware of the specific guidelines of the institution where the work is to be carried-out and be familiar with the application process to obtain a certificate, allowing the research to proceed. There is clearly a need to guide biomedical engineering students and practitioners in performing a balanced analysis of difficult questions and issues, while respecting societal values that may differ greatly from their own (Frize, 1996; Frize, 2005; Saha & Saha, 1997; Wueste, 1997). There exists a number of articles discussing biomedical engineering and ethics specifically aimed at clinical engineers (Goodman, 1989; Saha & Saha, 1986). These are helpful readings for anyone involved in biomedical research or clinical engineering.


Author(s):  
Carolyn Labun

At the University of British Columbia Okanagan School of Engineering (SOE), first year engineering students take a 3-credit course in Engineering Communication. Designed to replace the traditional 3-credits of English taken by other first year students, APSC 176 introduces students to the fundamentals of engineering communication, with a strong emphasis on written communication. The paper is describes the types of assignments given to first year students, the techniques used to encourage meaningful revision of written assignments, and the methods used to evaluate written assignments. Particular attention will be paid to a two-week first term design project (such as the assignment, supplemental materials including exercises, and marking guidelines). It should be noted that the design is entirely conceptual - students are not required to develop a prototype, but rather to work with a team to develop (and subsequently, explain and market) a concept in response to an RFP.


Author(s):  
Jason Bazylak ◽  
Peter Wild

The Design Engineering Challenge Series is a set of design events organized by the University of Victoria Design Engineering Office to enhance the undergraduate student design experience. The first of the two events run in the series was the First Year Design Engineering Challenge. This event challenged first year engineering students to design and construct a microcontroller-directed electromagnetic model crane, in a single day. The second event had students from across campus working in interdisciplinary teams to design video games. Both events were extremely successful with follow up events planned for the next academic year.


Author(s):  
Seach Chyr (Ernest) Goh ◽  
Sumi Siddiqua

First year engineering students at the University of British Columbia Okanagan, take the Fundamentals of Sustainable Engineering Design course as part of the suite of common courses for all engineering students regardless of discipline. The largest assessment components of the course are the final exam (40%) and the design project (40%). For the design project, teams of 4 – 6 students build a scaled-down prototype of a Well Ventilated yet Energy Efficient Room (WeVeyEER) that must be able to maintain its interior temperature at 10°C above ambient and at the same time continuously exchange stale air from within with fresh air from outside. It also has to meet load-bearing, size and power supply constraints. The energy consumption, rate of air exchange and weight are parameters for comparing performance of the prototypes. The majority of teams (55 out of 64) could achieve the requirements. Feedback about the project was mixed, with 57 positive and 56 negative comments.  


Sign in / Sign up

Export Citation Format

Share Document