AN ENGINEERING DESIGN PROJECT TO PROVIDE MULTI-DISCIPLINARY EXPERIENTIAL LEARNING

Author(s):  
Seach Chyr (Ernest) Goh ◽  
Sumi Siddiqua

First year engineering students at the University of British Columbia Okanagan, take the Fundamentals of Sustainable Engineering Design course as part of the suite of common courses for all engineering students regardless of discipline. The largest assessment components of the course are the final exam (40%) and the design project (40%). For the design project, teams of 4 – 6 students build a scaled-down prototype of a Well Ventilated yet Energy Efficient Room (WeVeyEER) that must be able to maintain its interior temperature at 10°C above ambient and at the same time continuously exchange stale air from within with fresh air from outside. It also has to meet load-bearing, size and power supply constraints. The energy consumption, rate of air exchange and weight are parameters for comparing performance of the prototypes. The majority of teams (55 out of 64) could achieve the requirements. Feedback about the project was mixed, with 57 positive and 56 negative comments.  

Author(s):  
Carolyn Labun

At the University of British Columbia Okanagan School of Engineering (SOE), first year engineering students take a 3-credit course in Engineering Communication. Designed to replace the traditional 3-credits of English taken by other first year students, APSC 176 introduces students to the fundamentals of engineering communication, with a strong emphasis on written communication. The paper is describes the types of assignments given to first year students, the techniques used to encourage meaningful revision of written assignments, and the methods used to evaluate written assignments. Particular attention will be paid to a two-week first term design project (such as the assignment, supplemental materials including exercises, and marking guidelines). It should be noted that the design is entirely conceptual - students are not required to develop a prototype, but rather to work with a team to develop (and subsequently, explain and market) a concept in response to an RFP.


Author(s):  
Stephen Mattucci ◽  
Jim Sibley ◽  
Jonathan Nakane ◽  
Peter Ostafichuk

Abstract – Giving and receiving feedback is a necessary, but often difficult skill for young engineers to acquire. We developed and piloted the delivery of a feedback model as part of the first-year engineering experience at the University of British Columbia. The approach is based on recognizing feedback as a form of professional communication, and that it requires practice to improve. We wove different aspects of communication skill development through two large newly-designed first-year introduction to engineering courses, building towards face-to-face feedback through a staged series of communication experiences. The full feedback model highlighted the nuances of face-to-face communication, and was called the "3×3", since it includes the three components involved in face-to-face feedback (sender, message, and receiver), each with three associated aspects. The sender uses appropriate words and body language, ensures proper interpretation, and is empathetic; the message is objective and non-judgmental, sufficiently detailed, and contains suggestions for improvement; and the receiver remains open and listening, acknowledges to the sender that they are listening, and clarifies to ensure understanding. Students applied what they had learned through an activity reviewing poster presentations from a major course design project. In the activity, they each had an opportunity to craft a feedback message before delivering the message face-to-face to a peer. Students then reflected on the feedback they received by summarizing the message, recognizing how the sender delivered the feedback, and identifying why the feedback was helpful. Student reflections were analyzed for themes from the 3×3 model. Students found feedback from peers particularly helpful when it was delivered in an appropriate and courteous manner, checked for proper interpretation, provided clear suggestions for improvement, and was coupled with praise of something that was done well. Providing students with a structured model allows them to follow a process in both providing effective face-to-face feedback, but also better appreciate why receiving feedback is beneficial in helping them improve.  


Author(s):  
Michael McGuire ◽  
Kin Fun Li ◽  
Fayez Gebali

Design is associated with the invention,planning and building a product. Engineering design, inparticular, takes considerable effort, skills, andintegration of knowledge; hence, it is difficult to teachfreshmen this subject since they have not possessed ordeveloped the proper skill set yet. The Faculty ofEngineering at the University of Victoria has beenteaching engineering design (in two successive courses)to all first-year engineering students. In addition toattending plenary lectures, student teams are working oncompetitive projects in the laboratory, while participatingin highly integrated communication modules. In thiswork, we discuss the curricula of these design courses,model of delivery and share our experience for the pastthree years.


Author(s):  
Carol Hulls ◽  
Chris Rennick ◽  
Sanjeev Bedi ◽  
Mary Robinson ◽  
William Melek

Prior to 2010, Mechanical and Mechatronics Engineering students at the University of Waterloo were taught an introductory programming course using C++ in first year. Historically, the emphasis was on learning syntax; practising problem-solving was a distant second priority. In addition, many students were noticeably disengaged in lectures, and the assessments used were not authentic.Starting in 2010, a course project was implemented to address these concerns. The project was immediately well received by students, as evidenced by a noticeable number of students going well beyond the minimum project requirements and the variety of projects implemented. Since the project was introduced, the students have been able to successfully answer less structured final exam questions. The increase in problem-solving and thinking skills more than offsets the reduction in language-specific facts. The logistics, challenges and resources required to implement a project of this scope will be described


Author(s):  
Peter Dare ◽  
Brian Cooke

A Task Force was created by the Faculty of Engineering at the University of New Brunswick in September 2004 charged with creating a new course for all first year engineering students to be delivered for the first time in September 2005. The course, to be taken by approximately 270 students, was to integrate material from other first year courses, introduce the students to working in teams, contain a substantial design element through a design project, and introduce communication skills. Nine professors from throughout engineering “volunteered” to help develop and deliver the course. In this paper we own up to what we did wrong during the first two years of delivery of this course, and (naturally!) counter this by celebrating our successes. Students are assessed based on a combination of individual and team submissions, with some submissions being oral and others written. This paper will outline the complex assessment scheme we initially used, and how we later simplified it. Rubrics were used to evaluate many of the course assignments. For most of the instructors, this was the first time they had used rubrics and so it was a learning experience to both develop and apply them. We show how we adapted their use in the second year of delivery after the experiences of the first year. We were pleased with the way that the assessments were mostly built around the design project – this helped the students grasp why clear communication is vital and enabled them to obtain continual feedback on the project. We were also delighted that an element of social responsibility was introduced into the course by making the project an international “Engineers Without Borders” project based in Africa. We believe this added an additional dimension to the course and especially the project. The professor-delivered skits were especially popular! Delivered by two wannabe actors, they introduced the students in a humorous manner to the different types of engineering that are taught at UNB. Engineering students at UNB have to commit to their specific engineering field from their first day at UNB, so these skits were included to ensure the students were exposed to all the UNB engineering disciplines. We conclude the paper with our plans for delivery of the course in September 2007 and beyond.


Author(s):  
Peter M. Ostafichuk ◽  
Carol P. Jaeger ◽  
Jonathan Nakane

This paper describes development and deployment of an online interactive ethical decision-making simulation.  This tool was piloted in a first-year introduction to engineering course at the University of British Columbia.  It used a “choose your own adventure” style of decision-making and narrative to add realism and engagement to what was otherwise viewed by students as dry, uninteresting content.  After storyboarding using sticky notes and Visio, the final tool used by students was implemented and deployed using a survey tool (Qualtrics). It featured a scenario with initially incomplete information and the appearance of unethical behaviour by others.  It included decision-based branching, but also randomization such that different groups had the story unfold differently, even if they made the same initial decisions.  Student feedback on this tool was very positive, suggesting this style of interactive online ethics simulation could be an effective tool for enhancing engagement and learning.


Author(s):  
Juan Abelló ◽  
Douglas Ruth

Abstract –First-year engineering students at the University of Manitoba take a thermodynamics course.  The summer instructor taught the course differently from the fall and winter terms. He combined tutorials with lectures to introduce active learning to the course, implemented an online problem library and increased the number of term tests. Students in the summer 2016 term were given a similar thermodynamic cycle question in their final exam as students in the winter 2016 term. Student performance inthe cycle question was compared in order to evaluate the effectiveness of the new teaching method. Both groups had similar question averages with generally similar question score histograms. However, winter students scored an average of 10% below their GPA, while summer students scored an average of 1% below their GPA. The difference between these averages is statistically significant (97.5% confidence). These results suggest that the new teaching approach leads to better student performance when solving thermodynamic cycles.  


Author(s):  
Peter M. Ostafichuk ◽  
Carol P. Jaeger ◽  
Quentin Golsteyn ◽  
Susan Nesbit

Transitioning from high school to university can be a difficult time for students. A significant element in this transition is related to heightened selfresponsibility and self-regulation for one’s own learning. A series of eight online screencasts (consisting of narrated video with activities and quiz questions) was created and introduced at the University of British Columbia in 2018 as a pilot project. The goal was to help first year engineering students with their academic transition by providing evidence-based principles of effective study strategies and attitudes. Materials were delivered in the academic setting, rather than through traditional orientation and support channels, as a way to elevate this content and to reach as many students as possible. Materials were optional but a small grade incentive was included. Students appear to have found the resources beneficial as roughly half of the class viewed at least half of the screencasts. The opportunity to earn a small course bonus mark was cited as a key incentive, but approximately half of students identified academic and university transition benefits as their primary reasons for viewing. A course survey conducted five months after the final screencast in the series revealed positive student attitudes towards the materials, with approximately 70% of students identifying the materials as helpful or very helpful. In addition, students who had viewed a particular screencast gave significantly more favourable responses in prompts regarding perceptions of effective study practices. Finally, a positive correlation was observed between the number of screencasts viewed and course final exam grade (+0.8% on the final per screencast viewed). Overall, the results of this pilot suggest the use of online screencast materials to aid students in the transition to university is effective.


Author(s):  
Warren Stiver

First year engineering design courses arenow common across Canadian engineering schools.These courses can be challenging to develop and deliver.They are often stuck in the chicken versus egg problem.Can I teach design with no engineering? Can I teachengineering with no design? How does one introducefour years of engineering education and an engineeringcareer in one course? How to do so across many or allengineering disciplines? How to do so in a foundationalmanner? Can it be done in a meaningful way? Can it beengaging and fun? A Teddy Bear Wheel Chair (TBWC)design project is the focal point of Guelph’s first yearengineering design course. The TBWC integratescomputers, mechanics, biomechanics (Teddy Bear style),environment, safety, sustainability, materials, costing,hands-on, perseverance, ethics and DESIGN. The TBWCparticipates in curling, sprinting and scoring goals. Theresult is a challenging and fun competition thatintroduces all of Guelph’s engineering students to theirengineering design careers. This paper and presentationwill share one instructor’s efforts to make all of this work.


Author(s):  
Danny D Mann ◽  
Kris J Dick ◽  
Sandra A Ingram

In previous years, several improvements to the teaching of engineering design were made by staff in the Department of Biosystems Engineering at The University of Manitoba. The first innovation occurred when a trilogy of courses spanning the final three years of the program was introduced as a replacement for a single capstone course in the final year of the program. In its original conception, engineering students were to get three opportunities to be involved in design problems originating from industry, with greater expectations with each subsequent experience. A second innovation occurred when technical communication was formally integrated within the trilogy of design courses. This innovation has helped engineering students realize the value of professional communication skills in collaborating with each other and in preparing reports and presentations for an industry client. A third innovation occurred three years ago when the decision was made to allow students to participate in the prototyping of their designs. The so-called “Design Trilogy” now consists of a single course (Design Trilogy I) taken during the second year of the engineering program (which builds upon the first-year design experience with the requirement of a conceptual solution in response to a design problem provided by industry) and two courses taken during the final year of the program. Students are required to have a design completed on paper by the completion of Design Trilogy II and fabrication of the prototype occurs during Design Trilogy III. The student experience in the Design Trilogy, with particular emphasis on curriculum innovations in Design Trilogy III, will be discussed.


Sign in / Sign up

Export Citation Format

Share Document