scholarly journals A FRAMEWORK FOR EXPLORING ETHICAL DILEMMAS IN A FIRST YEAR ENGINEERING COURSE

Author(s):  
Carol P. Jaeger ◽  
Peter M. Ostafichuk

Abstract A module on professionalism and ethics was developed and introduced in a recent redesign of the first year engineering curriculum at The University of British Columbia (UBC). Motivating factors for including this content in first year included providing students with a fuller understanding of the engineering profession, introducing content to support student development in multiple Canadian Engineering Accreditation Board (CEAB) graduate attributes, and providing education and support for students in the responsible use of peer review.  Additionally, feedback from senior engineering students indicated that students would benefit from inclusion of professionalism and ethics content earlier in the curriculum. In this paper, the structure and content of the module specifically related to ethics will be described, student feedback for the module will be presented, and key learnings will be discussed.

Author(s):  
Peter M. Ostafichuk ◽  
Carol P. Jaeger ◽  
Jonathan Nakane

This paper describes development and deployment of an online interactive ethical decision-making simulation.  This tool was piloted in a first-year introduction to engineering course at the University of British Columbia.  It used a “choose your own adventure” style of decision-making and narrative to add realism and engagement to what was otherwise viewed by students as dry, uninteresting content.  After storyboarding using sticky notes and Visio, the final tool used by students was implemented and deployed using a survey tool (Qualtrics). It featured a scenario with initially incomplete information and the appearance of unethical behaviour by others.  It included decision-based branching, but also randomization such that different groups had the story unfold differently, even if they made the same initial decisions.  Student feedback on this tool was very positive, suggesting this style of interactive online ethics simulation could be an effective tool for enhancing engagement and learning.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Chinweike Eseonu ◽  
Martin A Cortes

There is a culture of disengagement from social consideration in engineering disciplines. This means that first year engineering students, who arrive planning to change the world through engineering, lose this passion as they progress through the engineering curriculum. The community driven technology innovation and investment program described in this paper is an attempt to reverse this trend by fusing community engagement with the normal engineering design process. This approach differs from existing project or trip based approaches – outreach – because the focus is on local communities with which the university team forms a long-term partnership through weekly in-person meetings and community driven problem statements – engagement.


Author(s):  
Stephen Mattucci ◽  
Jim Sibley ◽  
Jonathan Nakane ◽  
Peter Ostafichuk

Abstract – Giving and receiving feedback is a necessary, but often difficult skill for young engineers to acquire. We developed and piloted the delivery of a feedback model as part of the first-year engineering experience at the University of British Columbia. The approach is based on recognizing feedback as a form of professional communication, and that it requires practice to improve. We wove different aspects of communication skill development through two large newly-designed first-year introduction to engineering courses, building towards face-to-face feedback through a staged series of communication experiences. The full feedback model highlighted the nuances of face-to-face communication, and was called the "3×3", since it includes the three components involved in face-to-face feedback (sender, message, and receiver), each with three associated aspects. The sender uses appropriate words and body language, ensures proper interpretation, and is empathetic; the message is objective and non-judgmental, sufficiently detailed, and contains suggestions for improvement; and the receiver remains open and listening, acknowledges to the sender that they are listening, and clarifies to ensure understanding. Students applied what they had learned through an activity reviewing poster presentations from a major course design project. In the activity, they each had an opportunity to craft a feedback message before delivering the message face-to-face to a peer. Students then reflected on the feedback they received by summarizing the message, recognizing how the sender delivered the feedback, and identifying why the feedback was helpful. Student reflections were analyzed for themes from the 3×3 model. Students found feedback from peers particularly helpful when it was delivered in an appropriate and courteous manner, checked for proper interpretation, provided clear suggestions for improvement, and was coupled with praise of something that was done well. Providing students with a structured model allows them to follow a process in both providing effective face-to-face feedback, but also better appreciate why receiving feedback is beneficial in helping them improve.  


Author(s):  
John Donald ◽  
Sofie Lachapelle ◽  
Thomas Sasso ◽  
Kyle Augusto ◽  
M. Gloria Gonzalez-Morales

While complementary studies are an accreditation requirement and feature prominently in the Canadian engineering curriculum, focus-group conversations with upper-year engineering students have indicated that a lack of awareness of, and appreciation for, soft skills development often prevents students from benefiting from complementary studies to the fullest. Given this reported difficulty to grasp the importance of complementary studies, a study was undertaken at the University of Guelph using a quasi-experimental design to explore the possibility that triggering self-assessment and awareness about career development early in the engineering curriculum promotes greater engagement with complementary studies and soft-skill development. First-year engineering students took part in a learner-centered activity focused on the importance of complementary studies for the development of soft skills. Through active learning exercises and case studies of successful engineering graduates, who described the skills and knowledge required to perform their daily work, the session was designed to encourage students to develop greater self-awareness and intentionality about complementary studies and their associated graduate attributes. The outcomes of this activity and issues on how to embed it in the Engineering first-year curriculum will be discussed


Author(s):  
Juan Abelló ◽  
Alys Avalos-Rivera ◽  
Gabriel Potvin ◽  
Saloome Motavas ◽  
Vladan Prodanovic ◽  
...  

This paper reports on a pilot study that investigated what motivated a group of first-year international students in the Vantage College program at the University of British Columbia (UBC) to pursue a degree in engineering. The study also sought to examine whether students report changes in their motivation as a result of completing their first year in our program. Data were collected through an open-ended survey provided to our cohort of 69 students, from which we received 66 responses. The results were analyzed qualitatively based on an expectancy value theoretical framework (focused on interest, utility, cost, and attainment.) The findings showed strong agreement with interest and utility as motivating factors, little agreement with attainment and cost as relevant factors, and the presence of additional motivators not present in our initial framework. The strongest among the latter group was family influence, with ability also appearing, yet to a lower degree. Our results suggest that interest and utility are the strongest motivators (over one third of students), with family influence (about one quarter) and ability (about one eight) being less important. We found few instances of cost (about one tenth) and no significant instances of attainment; this may be because engineering identity is developed as a student progresses through the undergraduate program.


Author(s):  
Carol Hulls ◽  
Chris Rennick ◽  
Mary Robinson ◽  
William Melek ◽  
Sanjeev Bedi

In Mechatronics Engineering at the University of Waterloo, a joint project involving small, inexpensive fuel cells cars was introduced to show how courses in the first term relate to one another. Additionally, the project was designed to provide the students with hands on learning, to give the students a taste of what to expect in later years, and to start incorporating many of the CEAB's graduate attributes at an introductory level. The fuel cell car consists of two low-voltage cells, a low power microcontroller and several sensors mounted on a motorised platform. Students employed concepts from chemistry, programming and mechatronics systems throughout the project, submitting reports at key milestones. during the projet, students needed to make decision in a team environment on which strageties to implement to meet the goals of the project. The project culminated in a final competition and report. Students were surveyed at the start, and end, and the term to measure any changes in attitude with regards to the courses as well as their satisfaction with the project. The project was well recieved by students but significant challenges remain to be solved.


Author(s):  
Peter M. Ostafichuk ◽  
Carol P. Jaeger ◽  
Jon Nakane ◽  
Susan Nesbit ◽  
Naoko Ellis ◽  
...  

A new first year introduction to engineering experience was developed at the University of British Columbia. This paper provides an overview of the two new courses and the lessons learned both in developing and delivering the courses. Several key problematic areas in the previous curriculum were addressed, namely, to improve student connection with the engineering profession, increase design and practical engineering experiences, more effectively integrate sustainability into the curriculum, and better emphasize the human and social connection to engineering.The courses operate in a flexible learning framework with a sequence of online, lecture, and studio components arranged in a whole-part-whole format delivered to a class of 850 students. Elements of numerous effective course design, teaching and learning practices, including integrated course design, constructive alignment, components of Team-Based Learning, classroom assessment techniques, peer evaluation, and peer grading were incorporated into these courses. Student feedbackthrough surveys has shown that the new format has been highly successful in addressing most of the key high-level goals, such as establishing a student connection to the engineering profession, helping students understand what engineers do and how they do it, and providing an introduction and appreciation for design, sustainability, decision-making, professionalism, and ethics..


Author(s):  
Carolyn Labun

At the University of British Columbia Okanagan School of Engineering (SOE), first year engineering students take a 3-credit course in Engineering Communication. Designed to replace the traditional 3-credits of English taken by other first year students, APSC 176 introduces students to the fundamentals of engineering communication, with a strong emphasis on written communication. The paper is describes the types of assignments given to first year students, the techniques used to encourage meaningful revision of written assignments, and the methods used to evaluate written assignments. Particular attention will be paid to a two-week first term design project (such as the assignment, supplemental materials including exercises, and marking guidelines). It should be noted that the design is entirely conceptual - students are not required to develop a prototype, but rather to work with a team to develop (and subsequently, explain and market) a concept in response to an RFP.


Author(s):  
Jason Bazylak ◽  
Peter Wild

The Design Engineering Challenge Series is a set of design events organized by the University of Victoria Design Engineering Office to enhance the undergraduate student design experience. The first of the two events run in the series was the First Year Design Engineering Challenge. This event challenged first year engineering students to design and construct a microcontroller-directed electromagnetic model crane, in a single day. The second event had students from across campus working in interdisciplinary teams to design video games. Both events were extremely successful with follow up events planned for the next academic year.


Author(s):  
Scott B. Nokleby ◽  
Remon Pop-Iliev

This paper outlines a novel engineering graphics and design course at the University of Ontario Institute of Technology (UOIT). The course is designed to enable first year engineering students to learn the engineering design process while at the same time developing strong free-hand sketching and 3-D solid modelling skills. The dual nature of the graphics-design course enables students to learn engineering graphics in a non-isolated manner. The results after two years of offering the course show that first-year team-based projects are feasible and manageable and that first-year engineering students are capable of completing rather complex and innovative solid modelling design projects.


Sign in / Sign up

Export Citation Format

Share Document