scholarly journals Paneth cells and stem cells in the intestinal stem cell niche and their association with inflammatory bowel disease

2012 ◽  
Vol 32 (2) ◽  
pp. 053-060 ◽  
Author(s):  
Kiminori Nakamura ◽  
Tokiyoshi Ayabe
Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Manasvini Markandey ◽  
Aditya Bajaj ◽  
Nicholas Edward Ilott ◽  
Saurabh Kedia ◽  
Simon Travis ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2061
Author(s):  
José Ignacio Cristóbal ◽  
Francisco Javier Duque ◽  
Jesús María Usón-Casaús ◽  
Patricia Ruiz ◽  
Esther López Nieto ◽  
...  

Mesenchymal stem cells have proven to be a promising alternative to conventional steroids to treat canine inflammatory bowel disease (IBD). However, their administration requires a washout period of immunosuppressive drugs that can lead to an exacerbation of the symptoms. Therefore, the feasibility and effects of the combined application of stem cells and prednisone in IBD-dogs without adequate response to corticosteroids was evaluated for the first time in this study over a long- term follow up. Two groups of dogs with IBD, one without treatment and another with prednisone treatment, received a single infusion of stem cells. The clinical indices, albumin and cobalamin were determined prior to the infusion and after one, three, six and 12 months. In both groups, all parameters significantly improved at each time point. In parallel, the steroid dosage was gradually reduced until it was suppressed in all patients a year after the cell therapy. Therefore, cell therapy can significantly and safely improve the disease condition in dogs with IBD receiving or not receiving prednisone. Furthermore, the steroid dosage can be significantly reduced or cancelled after the stem cell infusion. Their beneficial effects are stable over time and are long lasting.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Nikolce Gjorevski ◽  
Paloma Ordóñez-Morán

Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.


2020 ◽  
Author(s):  
Victoria G. Weis ◽  
Anna C. Deal ◽  
Gehad Mekkey ◽  
Cara Clouse ◽  
Michaela Gaffley ◽  
...  

AbstractNecrotizing enterocolitis (NEC), a life-threatening intestinal disease, is becoming a larger proportionate cause of morbidity and mortality in premature infants. To date, therapeutic options remain elusive. Based on recent cell therapy studies, we investigated the effect of a human placental-derived stem cell (hPSC) therapy on intestinal damage in an experimental NEC rat pup model. NEC was induced in newborn Sprague-Dawley rat pups for 4 days via formula feeding, hypoxia, and LPS. NEC pups received intraperitoneal (ip) injections of either saline or hPSC (NEC-hPSC) at 32 and 56 hours into NEC induction. At 4 days, intestinal macroscopic and histological damage, epithelial cell composition, and inflammatory marker expression of the ileum was assessed. Breastfed (BF) littermates were used as controls. NEC pups developed significant bowel dilation and fragility in the ileum. Further, NEC induced loss of normal villi-crypt morphology, disruption of epithelial proliferation and apoptosis, and loss of Paneth cells and LGR5+ stem cells in the crypt. hPSC treatment improved macroscopic intestinal health with reduced ileal dilation and fragility. Histologically, hPSC administration had a significant reparative effect on the villi-crypt morphology and epithelium. In addition to a trend of decreased inflammatory marker expression, hPSC-NEC pups had increased epithelial proliferation and decreased apoptosis when compared to NEC littermates. Further, the intestinal stem cell niche of Paneth cells and LGR5+ stem cells was increased with hPSC therapy. Together, these data demonstrate hPSC can promote epithelial healing of NEC intestinal damage in part through support of the intestinal stem cell niche.New and NoteworthyThese studies demonstrate a human placental-derived stem cell (hPSC) therapeutic strategy for necrotizing enterocolitis (NEC). In an experimental model of NEC, hPSC administration improved macroscopic intestinal health, ameliorated epithelial morphology, and supported the intestinal stem cell niche. Our data suggest that hPSC are a potential therapeutic approach to attenuate established intestinal NEC damage. Further, we show hPSC are a novel research tool that can now be utilized to elucidate critical neonatal repair mechanisms to overcome NEC disease.


2020 ◽  
Author(s):  
Eloïse Mussard ◽  
Cécile Pouzet ◽  
Virginie Helies ◽  
Géraldine Pascal ◽  
Sandra Fourre ◽  
...  

AbstractIntestinal organoids are self-organized 3-dimensional (3D) structures formed by a single layer of polarized epithelial cells. This innovative in vitro model is highly relevant to study physiology of the intestinal epithelium and its role in nutrition and barrier function. However, this model has never been developed in rabbits, while it would have potential applications for biomedical and veterinary research. Here, we cultured rabbit caecum organoids with either pharmacological inhibitors (2Ki medium) or L-WRN cells conditioned medium (L-WRN CM) to reconstitute the intestinal stem cell niche in vitro. Large spherical organoids were obtained with the 2Ki medium and this morphology was associated with a high level of proliferation and stem cells markers gene expression. In contrast, organoids cultured with L-WRN CM had a smaller diameter; a greater cell height and part of them were not spherical. When the L-WRN CM was used at low concentration (5%) for two days, the gene expression of stem cells and proliferation markers were very low, while absorptive and secretory cells markers and antimicrobial peptides were elevated. Epithelial cells within organoids were polarized in 3D cultures with 2Ki medium or L-WRN CM (apical side towards the lumen). We cultured dissociated organoid cells in 2D monolayers, which allowed accessibility to the apical compartment. Under these conditions, actin stress fibers were observed with the 2Ki medium, while perijonctionnal localization of actin was observed with the L-WRN CM suggesting, in 2D cultures as well, a higher differentiation level in the presence of L-WRN CM. In conclusion, rabbit caecum organoids cultured with the 2Ki medium were more proliferative and less differentiated than organoids cultured with L-WRN CM. We propose that organoids cultured with the 2Ki medium could be used to rapidly generate in vitro a large number of rabbit intestinal epithelial stem cells while organoids cultured with the L-WRN CM represent a suitable model to study differentiated rabbit epithelium.


2020 ◽  
Vol 71 (2) ◽  
pp. 211-213
Author(s):  
K. Sato ◽  
S. Chitose ◽  
K. Sato ◽  
F. Sato ◽  
T. Kurita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document