scholarly journals In Vitro Regeneration of Tea (Camellia sinensis (L). O. Kuntze) By Somatic Embryogenesis from Immature Cotyledon Tissues

Author(s):  
Emine Yurteri ◽  
Mücahit Salih Can ◽  
Fatih Seyis ◽  
Haydar Kuplemez

Tea (Camellia sinensis) is the world's most popular beverage plant, as well as an important plantation crop with high commercial value. It has been maintained for centuries through conventional vegetative propagation. Tea clonal propagation in vitro has the advantage of producing a large number of elite plants. If an efficient in vitro regeneration technology is available, this technique could be exploited for selection of tea plants for desired trait. The selected plants could be later on multiplied through in vitro or ex vitro techniques. The study aimed to induced somatic embryogenesis from immature embryo explants to genetic variaton. Different concentrations of phenylboronic acid with benzyladenine and phenylboronic acid with kinetin were tested in MS medium with 30 g/L sucrose and 8 g/L agar. MS medium without any plant growth regulators was used as control group. Considering the embryo survival rate, 1.5 mg/ L-1 phenylboronic acid + 1 mg/ L-1 kinetin produced highest result as 87.3% while lowest was in control group as 36.7%. The highest plant regeneration rate was found in 1,5 mg/ L-1 phenylboronic acid + 1 mg/ L-1 kinetin and 1.5 mg/ L-1 phenylboronic acid + 1 mg/ L-1 benzyladenine medium respectively as 58.3% and 55.6%. Kinetin treatment with increasing phenylboronic acid concentrations gave the best results in terms of somatic embryo survival rate. Also, kinetin treatment produced better results when compared to benzyladenine concentrations.

2018 ◽  
Vol 30 (1) ◽  
pp. 163
Author(s):  
S. Ledda ◽  
J. M. Kelly ◽  
S. K. Walker ◽  
Y. Natan ◽  
A. Arav

To advance the use of embryo vitrification technology in veterinary practice, we developed a system in which embryo vitrification, warming, and dilution can be performed within a straw. An in-straw embryo cryopreservation method reduces the need for equipment and technical skills and can facilitate direct embryo transfer to the uterus. This study proposes the use of a new device named “Sarah” that is designed to permit all in-straw embryo cryopreservation procedures. Ovine in vitro-produced (IVP) embryos were vitrified at either early blastocyst stage (EB, n = 65, 6 days post-IVF) or fully expanded blastocyst stage (FB, n = 168, 7 days post-IVF). The vitrification procedure using Sarah constituted a 0.25-mL straw with a capsule having 50-µm pores inserted at one end. Embryos at each stage (EB and FB) were divided into 2 subgroups and vitrified by 1 of 2 methods: (1) multi-step (MS) group-a straw containing 2 embryos was sequentially loaded vertically into 1.5-mL tubes containing 6 different vitrification solutions: 10, 20, 40, 60, 80, or 100% ES (with 100% ES being 7.5% DMSO +7.5% EG + 20% FCS in TCM-199; 90 s each step) followed by 30 s each in 75 and 100% VS (100% VS being 18% DMSO +18% EG + 0.5 M trehalose + BSA in TCM-199); and (2) two-step (TS) group-the straw (2 embryos/straw) was loaded with 100% of ES (5 min), followed by 100% VS solution for 30 s. For both methods, at the end of the preparation steps, the straws were plunged directly into liquid N2. Non-vitrified embryos were maintained in in vitro culture as a control group (n = 102). The warming procedure consisted of placing the straws directly into 5-mL tubes containing 100, 50, 25% WS (WS = 1 M sucrose in TCM-199+ 20% FCS) at 38.6°C (for first solution) and at room temperature for all the rest (5 min each), before being placed into the holding medium. Embryos were recovered from the straws, incubated at 38.6 C in 5% CO2 in air in TCM 199 + 5% FCS, and evaluated for blastocoel re-expansion, embryo survival, and hatching rate at 2, 14, 48 h post-warming. Blastocyst re-expansion (2 h) after warming increased as the developmental stage progressed and was not affected by the vitrification method. In fact, it was significantly (P < 0.05) higher for FB vitrified in the MS and TS methods (77.90% and 71.25%, respectively) compared with the EB method (62.5% and 48.50%, respectively). At 24 h, survival rate of vitrified FB was significantly higher (P < 0.05) in the MS system (95.35%) compared with those in TS (86.25%). Survival rates of FB embryos for both methods (MS and TS) were significantly higher (P < 0.001) than EB embryos vitrified in MS (56.25%) and TS (56.55) methods. After 48 h of culture, the hatching rate for FB vitrified in the MS system (87.21%) was comparable with TS (77.5%) and control (85.3%) groups but significantly higher (P < 0.001) than vitrified EB in MS (43.75%) and TS (36.36%). In conclusion, we showed that a high survival rate of IVP embryos can be achieved by this new in-straw vitrification and warming device (“Sarah”), with hatching rates in vitro comparable with that of control fresh embryos. This method has the potential for use in direct embryo transfer in field conditions.


2007 ◽  
Vol 19 (1) ◽  
pp. 180 ◽  
Author(s):  
N. Mucci ◽  
G. G. Kaiser ◽  
G. Rios ◽  
R. H. Alberio ◽  
L. B. Ferré ◽  
...  

In previous studies (unpublished data) we observed that the replacement of open pulled straws (OPS) with glass capillaries (GC) did not affect the embryo survival rate after vitrification–warming. The aim of this work was to evaluate the post-Cryopreservation survival rate of in vitro-produced bovine blastocysts (B) and expanded blastocysts (eB) using Dulbecco&apos;s phosphate-buffered saline (PBS) or TCM-199 (TCM; Sigma-Aldrich, St Louis, MO, USA) as holding medium during vitrification and warming in glass capillaries. Cumulus–oocyte complexes were in vitro-matured and fertilized as previously described (Mucci et al. 2006 Theriogenology 65, 1551–1562), and cultured in 4 well plates in groups of 50 in 400-�L drops in serum-free CR1aa under low oxygen condition. Grade B1, B2, and eB were selected at Day 7 post-insemination and allocated to 3 groups: vitrification in TCM, vitrification in PBS, and control (without vitrification). Vitrification and warming were performed according to Vajta et al. (1998, Mol. Reprod. Dev. 51, 53–58), replacing OPS with GC (Tecnon Argentina S.A., Buenos Aires, Argentina); 75 mM length, 1.4 mM internal diameter, 1.6 mM external diameter). Briefly, B and eB were incubated in 1.78 M ethylene glycol (EG) and 1.3 M dimethyl sulfoxide (DMSO) in TCM or PBS supplemented with 20% estrous cow serum (ECS) for 3 min. Embryos were then transferred for 25 s to TCM or PBS supplemented with 3.56 M EG, 2.6 M DMSO, 0.5 M sucrose, and 20% ECS (vitrification solution: VS). Loading of embryos (2 per capillary) was performed by touching a 1-�L drop of VS with the capillary. After this, each capillary was immediately submerged into and stored in liquid nitrogen. Warming was performed by placing the capillary tip directly into TCM or PBS supplemented with 0.25 M sucrose for 5 min. Embryos were then transferred to TCM or PBS containing 0.15 M sucrose and 20% ECS for 1 min. After warming, embryos were cultured for 72 h in CR1aa + 5% ECS to evaluate embryo survival (hatching rate). Data was analyzed using the CATMOD procedure (SAS Institute, Inc., Cary, NC, USA). No interaction was found between holding media and embryo stage. Vitrified-warmed embryos had a significantly lower hatching rate compared with the control group (P &lt; 0.05), whereas no differences were found between TCM and PBS. Expanded blastocysts had a higher hatching rate than blastocysts (P &lt; 0.05). In conclusion, TCM can be replaced with PBS for its use in vitrification procedures. This protocol modification allows a simplified use of this technique in field conditions.


2012 ◽  
Vol 40 (2) ◽  
pp. 140 ◽  
Author(s):  
Hafiz Mamoon REHMAN ◽  
Iqrar Ahmad RANA ◽  
Siddra IJAZ ◽  
Ghulam MUSTAFA ◽  
Faiz Ahmad JOYIA ◽  
...  

Dalbergia sissoo Roxb. ex DC. (Sissoo) is a native forest tree species in Pakistan. Many ecological and economical uses are associated with this premier timber species, but dieback disease is of major concern. The objective of this study was to develop a protocol for in vitro regeneration of Sissoo that could serve as target material for genetic transformation, in order to improve this species. Callus formation and plantlet regeneration was achieved by culturing cotyledons, immature seeds, and mature embryos on a modified Murashige and Skoog (1962) (MS) medium supplemented with plant growth regulators. Callus induction medium containing 2.71 ?M 2, 4-dichlorophenoxyacetic acid (2,4-D) and 0.93 ?M kinetin produced better callus on all explants tested compared to other treatments, such as 8.88 ?M 6-benzylaminopurine (BA) and 2.69 ?M ?-naphthalene acetic acid (NAA), or 2.71 ?M 2, 4-D and 2.69 ?M NAA. Shoot regeneration was best on MS medium containing 1.4 ?M NAA and 8.88 ?M BA compared to other treatments, such as 1.4 ?M NAA and 9.9 ?M kinetin, or 2.86 ?M indole-3-acetic acid and 8.88 ?M BA. Murashige and Skoog medium containing 1.4 NAA ?M and 8.88 ?M BA was better in general for regeneration regardless of callus induction medium and the type of explant used. Rooting was best on half-strength MS medium with 7.35 ?M indole-3-butyric acid. Regenerated plantlets were acclimatized for plantation in the field. Preliminary genetic transformation potential of D. sissoo was evaluated by particle bombardment of callus explants with a pUbiGus vector. The bombarded tissue showed transient Gus activity 1week after bombardment. Transformation of this woody tree is possible provided excellent regeneration protocols. The best combination for regeneration explained in this study is one of such protocols.


2017 ◽  
Vol 4 (2) ◽  
pp. 52-56
Author(s):  
Mallika Devi T

In the present study the protocol for callus induction and regeneration in Azima tetracantha has been developed in culture medium. The young apical leaf explants were used for callus induction on MS medium containing BAP and NAA at 1.0 and 0.4mgl-1 respectively showed maximum callus induction (73%). The amount of callus responded for shoot formation (74%) was obtained in the MS medium containing BAP (1.5 mgl-1) and NAA (0.3mgl-1).The elongated shoots were rooted on half strength medium supplemented with IBA (1.5 mgl-1) and Kn (0.4 mgl-1) for shoots rooted. Regenerated plantlets were successfully acclimatized and hardened off inside the culture and then transferred to green house with better survival rate.


2006 ◽  
Vol 2 (2) ◽  
pp. 146-151 ◽  
Author(s):  
R.O. Oduor ◽  
E.N.M. Njagi ◽  
S. Ndung` u ◽  
J.S. Machuka

2018 ◽  
Vol 6 ◽  
pp. 1185-1191
Author(s):  
Minh Van Tran

Phalaenopsis spp. was regularly produced through micropropagation by protocorm like bodies (PLBs); micropropagation takes a lot of labor, and has high cost of seedlings, energy and material. The purpose of this paper was to study the new technique of using in vitro embryogenesis culturing for microprogation. The method involved using protocorm like bodies as planting materials. PLBs were cut into slices and placed on the medium for callus initiation. The callus was initiated on the medium MS + BA (0.1 mg/l) supplemented with NAA (1 mg/l) or 2,4D (1 mg/l) and was proliferated on the medium MS + BA (0.1 mg/l) supplemented with NAA (1 mg/l). Somatic cell suspensions were initiated and proliferated on the medium MS + BA (0.1 mg/l) supplemented with NAA (0.5, 1 mg/l). Somatic cell suspensions were differentiated to embryonic cell suspensions on the MS medium supplemented with NAA (0.1 mg/l) + BA (0.5 mg/l). Embryonic cell suspensions were plated and regenerated on the medium: 1/2MS supplemented with NAA (0.1 mg/l) + BA (0.5 mg/l). Micropropagation of Phalaenopsis sp. via the embryogenesis technique was set up to produce 5,800 plantlets per one liter of somatic embryogenesis suspension.


2008 ◽  
Vol 11 (5) ◽  
pp. 726-732 ◽  
Author(s):  
Fotso . ◽  
Oumar . ◽  
Niemenak Nicolas ◽  
Donfagsiteli Tchinda Ne ◽  
Omokolo Ndoumou De

Sign in / Sign up

Export Citation Format

Share Document