scholarly journals Rigid-Plastic FEM Analysis of Three-Dimensional Cutting Mechanism (2nd Report)

1996 ◽  
Vol 62 (4) ◽  
pp. 526-530 ◽  
Author(s):  
Kanji UEDA ◽  
Keiji MANABE ◽  
Syoji NOZAKI
2021 ◽  
Vol 11 (12) ◽  
pp. 5461
Author(s):  
Elmedin Mešić ◽  
Enis Muratović ◽  
Lejla Redžepagić-Vražalica ◽  
Nedim Pervan ◽  
Adis J. Muminović ◽  
...  

The main objective of this research is to establish a connection between orthodontic mini-implant design, pull-out force and primary stability by comparing two commercial mini-implants or temporary anchorage devices, Tomas®-pin and Perfect Anchor. Mini-implant geometric analysis and quantification of bone characteristics are performed, whereupon experimental in vitro pull-out test is conducted. With the use of the CATIA (Computer Aided Three-dimensional Interactive Application) CAD (Computer Aided Design)/CAM (Computer Aided Manufacturing)/CAE (Computer Aided Engineering) system, 3D (Three-dimensional) geometric models of mini-implants and bone segments are created. Afterwards, those same models are imported into Abaqus software, where finite element models are generated with a special focus on material properties, boundary conditions and interactions. FEM (Finite Element Method) analysis is used to simulate the pull-out test. Then, the results of the structural analysis are compared with the experimental results. The FEM analysis results contain information about maximum stresses on implant–bone system caused due to the pull-out force. It is determined that the core diameter of a screw thread and conicity are the main factors of the mini-implant design that have a direct impact on primary stability. Additionally, stresses generated on the Tomas®-pin model are lower than stresses on Perfect Anchor, even though Tomas®-pin endures greater pull-out forces, the implant system with implemented Tomas®-pin still represents a more stressed system due to the uniform distribution of stresses with bigger values.


2012 ◽  
Vol 178-181 ◽  
pp. 2373-2377 ◽  
Author(s):  
Wen Tsung Liu ◽  
Yi Yi Li

From the 921 earthquake to the major typhoons, including the Morakot typhoon, they damaged original landscape of rivers in Taiwan. In recent years, it alleged that abutment bridge exposed to the most serious security problems. Because of bridge piers in addition to the face of long-term river erosion, the flood on the pier will produce localized erosion near the bridge. The pier will be due to inadequate bearing capacity, resulting in subsidence, displacement, bridge version accompanied by tilting and even caving. The river erosion of soil around the piers deposits and production of contraction will often reduce the bearing capacity. Therefore, how to accurately estimate the scour depth, calculate piers to withstand water impact and analyses its stability for preventing injuries in the first place is the current pressing issues. In this study, three-dimensional finite element method (FEM) analysis program Plaxis 3D foundation is used. Polaris second bridge is selected for analysis. Based on local scouring of the model and various numerical variable conditions, the parameter of bridge pier is studied.


Author(s):  
Y. H. Tang ◽  
H. Yu ◽  
J. E. Gordon ◽  
M. Priante ◽  
D. Y. Jeong ◽  
...  

This paper describes analyses of a railroad tank car impacted at its side by a ram car with a rigid punch. This generalized collision, referred to as a shell impact, is examined using nonlinear (i.e., elastic-plastic) finite element analysis (FEA) and three-dimensional (3-D) collision dynamics modeling. Moreover, the analysis results are compared to full-scale test data to validate the models. Commercial software packages are used to carry out the nonlinear FEA (ABAQUS and LS-DYNA) and the 3-D collision dynamics analysis (ADAMS). Model results from the two finite element codes are compared to verify the analysis methodology. Results from static, nonlinear FEA are compared to closed-form solutions based on rigid-plastic collapse for additional verification of the analysis. Results from dynamic, nonlinear FEA are compared to data obtained from full-scale tests to validate the analysis. The collision dynamics model is calibrated using test data. While the nonlinear FEA requires high computational times, the collision dynamics model calculates gross behavior of the colliding cars in times that are several orders of magnitude less than the FEA models.


1988 ◽  
Vol 24 (1) ◽  
pp. 126-129 ◽  
Author(s):  
T. Yoshimoto ◽  
S. Yamada ◽  
K. Bessho

Sign in / Sign up

Export Citation Format

Share Document