scholarly journals Development of Pin-type Vacuum Chuck for High Precision Machining

1997 ◽  
Vol 63 (12) ◽  
pp. 1705-1709 ◽  
Author(s):  
Shinsuke MATSUI ◽  
Fumikazu OHIRA ◽  
Yoshimasa ISHIKAWA ◽  
Atsunobu UNE ◽  
Akira SHIMIZU
2014 ◽  
Vol 543-547 ◽  
pp. 4698-4701
Author(s):  
Juan Wang

During the processing of aircraft and other high precision machinery workpieces, if using the traditional machining methods, it will consume a amount of machining costs, and the mechanical processing cycle is long. In this context, this paper designs a kind of robot intelligent processing system with high precision machinery. And it has realized the intelligent online control on the machining process by using the high precision machining intelligent online monitoring technology and the numerical simulation prediction technology. Finally, this system is introduced into the process of data mining for volleyball game, and designs the partial differential variational data mining model, which has realized the key parameter data mining of volleyball games service system, and has provided reliable parameters and technical support for the training of volleyball players.


2001 ◽  
Author(s):  
Som Chattopadhyay

Abstract Positioning accuracy within the range of nanometers is required for high precision machining applications. The implementation of such a range is difficult through the slides because of (a) irregular nature of friction at the slider-guideway interface, and (b) complex motion characteristic at very low speeds. The complexity arises due to the local deformation at the interface prior to breakaway, which is known as microdynamics. In this work prior experimental results exhibiting microdynamics have been appraised, and mathematical model developed to understand this behavior.


2014 ◽  
Vol 7 (5) ◽  
pp. 66-69
Author(s):  
V. V. Postnov ◽  
◽  
S. K. Khadiullin ◽  
S. V. Starovoitov ◽  
L. R. Kilmetova ◽  
...  

1999 ◽  
Author(s):  
Katsuhito Yoshida ◽  
Satoru Kukino ◽  
Takashi Harada ◽  
Tomohiro Fukaya ◽  
Junichi Shiraishi ◽  
...  

Abstract PCBN (Polycrystalline Cubic Boron Nitride) cutting tools have become very familiar in the industries for cutting hardened steel parts and the demand for PCBN tools is growing rapidly. One of the reasons for this is the trend of replacing grinding processes with cutting. Although the trend of processing is to use more cutting, there still remains grinding in many processing fields. High precision machining and high speed interrupted machining have been such fields. In this study it has been verified that a novel cutting method can be applied to high precision machining with the smoothness of Rz 0.8 μm and that a new PCBN has sufficient reliability against tool failure in high speed (< 250m/min) interrupted cutting. Thus cutting has become applicable to those machining and the trend of replacement of grinding with cutting will be enhanced. Those new technologies will be introduced in this report.


2015 ◽  
Vol 789-790 ◽  
pp. 296-299
Author(s):  
Shao Hsien Chen ◽  
Shang Te Chen ◽  
Chien Cheng Hsu

High-precision machining and large-scale tool are the most primary development trend of current machine tool and hydrostatic products are key technologies of high-precision machining equipments. However, these equipments mostly process miniature components, thus the adopted tools are relatively small and the spindles mainly use are mainly built-in types of HSK32 to HSK25 with revolutions speed over 25,000rpm. Some processing equipments are even equipped with hydrostatic or gas-static spindles. The study extends the axial oil chamber to radial ones to expand the action area of axial oil pressure and form a closed oil seal edge by combining the radial clearance. Consequently, the axial bearing stiffness can be enhanced to enlarge the application scope of hydrostatic spindle. The design mode can enhance axial stiffness of spindle modules or strengthen the stiffness of hydrostatic spindle in a ball screw.


Author(s):  
Kazuhiro FUJISAKI ◽  
Hideo YOKOTA ◽  
Naomichi FURUSHIRO ◽  
Shintaro KOMATANI ◽  
Sumito OHZAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document