scholarly journals Surface Modification Process by Electrical Discharge Machining with TiC Semi-sintered Electrode.

2001 ◽  
Vol 67 (1) ◽  
pp. 114-119 ◽  
Author(s):  
Toshio MORO ◽  
Akihiro GOTO ◽  
Naotake MOHRI ◽  
Nagao SAITO ◽  
Koei MATSUKAWA ◽  
...  
2001 ◽  
Vol 35 (78) ◽  
pp. 26-33 ◽  
Author(s):  
Toshio MORO ◽  
Akihiro GOTO ◽  
Naotake MOHRI ◽  
Nagao SAITO ◽  
Hidetaka MIYAKE ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1018
Author(s):  
Ziliang Zhu ◽  
Dengji Guo ◽  
Jiao Xu ◽  
Jianjun Lin ◽  
Jianguo Lei ◽  
...  

Titanium-nickel shape memory alloy (SMA) has good biomedical application value as an implant. Alloy corrosion will promote the release of toxic nickel ions and cause allergies and poisoning of cells and tissues. With this background, surface modification of TiNi SMAs using TiC-powder-assisted micro-electrical discharge machining (EDM) was proposed. This aims to explore the effect of the electrical discharge machining (EDM) parameters and TiC powder concentration on the machining properties and surface characteristics of the TiNi SMA. It was found that the material removal rate (MRR), surface roughness, and thickness of the recast layer increased with an increase in the discharge energy. TiC powder’s addition had a positive effect on increasing the electro-discharge frequency and MRR, reducing the surface roughness, and the maximum MRR and the minimum surface roughness occurred at a mixed powder concentration of 5 g/L. Moreover, the recast layer had good adhesion and high hardness due to metallurgical bonding. XRD analysis found that the machined surface contains CuO2, TiO2, and TiC phases, contributing to an increase in the surface microhardness from 258.5 to 438.7 HV, which could be beneficial for wear resistance in biomedical orthodontic applications.


2012 ◽  
Vol 490-495 ◽  
pp. 2619-2623 ◽  
Author(s):  
Xiao Hai Li ◽  
De Cheng Wang ◽  
Yu Fang

A new method of die surface modification by ordinary Electrical Discharge Machining (EDM) is described. First, the surface modification mechanism by EDM is studied, which is different with ordinary EDM. Secondly, the influence of important electric parameters on the effect of electric discharging coating in working fluid is analyzed, which is helpful to improve the coating layer. At last, the new type special pulse power supply with additional pulse current is designed. The special pulse power supply for electrical discharge coating behaves well, and the compacted coating layer without cracks deposited on the surface of die by EDM can be obtained, which can prolong the life of die


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Meinam Annebushan Singh ◽  
Ondrej Hanzel ◽  
Ramesh Kumar Singh ◽  
Pavol Šajgalík ◽  
Deepak Marla

Abstract Electrical discharge machining of conducting ceramics is often associated with high roughness and porosity, which hinders their application. This porosity-laden surface morphology necessitates a postprocessing technique to reduce the severity of the surface defects. Hence, this study focuses on the utilization of a nanosecond pulsed laser as a surface modification tool to minimize the debris and pores formed on the surface after the wire-electrical discharge machining process. This paper presents a study on the influence of laser parameters, viz., power, number of scans, scanning speed, and pulse repetition rate on the overall surface characteristics. The concentration of surface debris and pores were observed to significantly decrease with laser surface modification (LSM). The improvement in the surface characteristics after laser processing with low fluence was mainly attributed to melting, vaporization, and subsequent flow of molten material, which led to filling of the surface pores. This resulted in a more even surface postlaser surface modification. The surface roughness was observed to decrease by ∼49% after the laser processing at lower values of laser power, number of scans, and scanning speed and at higher values of pulse repetition rate. Furthermore, spatial, hybrid, and functional volume characteristics were observed to improve postlaser modification. However, at higher laser fluence, the processed surfaces were observed to get further worsened with the formation of deep ridges.


Sign in / Sign up

Export Citation Format

Share Document