scholarly journals Prediction of Chip Formation and Cutting Forces in Drilling with Curved Cutting Edge Drills (2nd Report). Comparison of Calculated and Experimental Results.

2001 ◽  
Vol 67 (9) ◽  
pp. 1432-1437
Author(s):  
Kazuo KASAHARA ◽  
Akihiko HIROTA ◽  
Tuyoshi KAWASAKI
Author(s):  
Yao Xi ◽  
Michael Bermingham ◽  
Gui Wang ◽  
Matthew Dargusch

The improvement in machinability during thermally assisted turning of the Ti-6Al-4V alloy has been investigated using finite element modeling. A 2D thermally assisted turning model was developed and validated by comparing the simulation results with experimental results. The effect of workpiece temperature on the cutting force and chip formation process was examined. The predicted cutting forces and chip morphologies from the simulation strongly correlated with the experimental results. It was observed from the simulation that the chip forms after the coalescence of two deformed regions in the shear band and that the cyclic cutting forces are strongly related to this chip formation process.


Author(s):  
Chengfeng Li ◽  
Xinmin Lai ◽  
Hongtao Li ◽  
Linfa Peng ◽  
Jun Ni

This paper develops a three-axis micro milling machine for manufacturing meso-scale components and products. This machine utilizes high-speed miniature spindle to obtain appropriate cutting velocities, and three precision linear stages with 50 nm feed resolution to supply the relative motion. The PMAC2 controller is used to control three axes simultaneously, and a piezoelectric dynamometer is mounted on the X-Y stages to measure three-dimensional cutting forces for the real-time measurement and feedback. More than 200 cutting experiments of end milling operations are performed on the developed machine. When the machined feature ranges at meso scale, the characteristics and phenomena in milling process will heavily differ from those of conventional scale milling due to the size effects. The critical differences at meso scale arise from the breakdown of the assumptions of negligible edge radius effects. The roundness of cutting edge and the runout of spindle have a crucial impact on the chip formation process and the characteristics of cutting forces. The roundness of cutting edge also induces the existence of the minimum chip thickness and the intermittency of the chip formation at a low feed per tooth.


2013 ◽  
Vol 765 ◽  
pp. 343-347 ◽  
Author(s):  
Yao Xi ◽  
Michael Bermingham ◽  
Gui Wang ◽  
Matthew Dargusch

The improvement of machinability during thermally assisted turning of Ti-6Al-4V alloy was investigated by finite element modelling. A 2D thermally assisted turning model was developed and validated by comparing the simulation results with experimental results. Detailed analyses were carried out on the simulations in terms of the influence of the initial work-piece temperature on cutting forces and chip formation in the TAM process. The predicted cutting forces showed a very good correlation to the experimental results, and both the simulation and experiments have proved that the initial work-piece temperature plays an important role in determining the cutting force, with increasing initial temperature reducing the cutting force.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2786-2791 ◽  
Author(s):  
JAE HWAN SON ◽  
CHANG WOO HAN ◽  
SUN IL KIM ◽  
HEE CHUL JUNG ◽  
YOUNG MOON LEE

Whirling is a cutting process in which a series of cutting edges remove material by turning over the rotating workpiece. In this process, the whirling ring with a number of cutting teeth combined with the rotation and advancement of workpiece, produces pitches of worm. Mechanics of chip formation of the process, however, has not been fully estabilished. To estimate the cutting force during the process, the kinematics and the maximum undeformed chip thickness to be removed by each cutting edge should be thoroughly analyzed. In this study, using the recently developed model of undeformed chip thickness and the DEFORM software, cutting forces of the whirling process are estimated. The effects of cutting forces on tool are analyzed using the ADAMS software. The validity of the simulations has been verified with a series of cutting experiments.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1161
Author(s):  
Hans Jürgen Maier ◽  
Sebastian Herbst ◽  
Berend Denkena ◽  
Marc-André Dittrich ◽  
Florian Schaper ◽  
...  

In the current study, the potential of dry machining of the titanium alloy Ti-6Al-4V with uncoated tungsten carbide solid endmills was explored. It is demonstrated that tribo-oxidation is the dominant wear mechanism, which can be suppressed by milling in an extreme high vacuum adequate (XHV) environment. The latter was realized by using a silane-doped argon atmosphere. In the XHV environment, titanium adhesion on the tool was substantially less pronounced as compared to reference machining experiments conducted in air. This goes hand in hand with lower cutting forces in the XHV environment and corresponding changes in chip formation. The underlying mechanisms and the ramifications with respect to application of this approach to dry machining of other metals are discussed.


Sign in / Sign up

Export Citation Format

Share Document