scholarly journals Prediction of Chip Formation and Cutting Forces in Milling with Ball End Mills. (2nd Report). Comparison of Calculated and Experimental Results, and Cutting Force Prediction Based on the Geometric Similarity.

2003 ◽  
Vol 69 (4) ◽  
pp. 524-529 ◽  
Author(s):  
Kazuo KASAHARA ◽  
Akihiko HIROTA ◽  
Yosuke SASAI
2017 ◽  
Vol 11 (6) ◽  
pp. 958-963
Author(s):  
Koji Teramoto ◽  
◽  
Takahiro Kunishima ◽  
Hiroki Matsumoto

Elastomer end-milling is attracting attention for its role in the small-lot production of elastomeric parts. In order to apply end-milling to the production of elastomeric parts, it is important that the workpiece be held stably to avoid deformation. To evaluate the stability of workholding, it is necessary to predict cutting forces in elastomer end-milling. Cutting force prediction for metal workpiece end-milling has been investigated for many years, and many process models for end-milling have been proposed. However, the applicability of these models to elastomer end-milling has not been discussed. In this paper, the characteristics of the cutting force in elastomer end-milling are evaluated experimentally. A standard cutting force model and its parameter identification method are introduced. By using this cutting force model, measured cutting forces are compared against the calculated results. The comparison makes it clear that the standard cutting force model for metal end-milling can be applied to down milling for a rough evaluation.


Author(s):  
W. Ferry ◽  
Y. Altintas

Jet engine impeller blades are flank-milled with tapered, helical, ball-end mills on five-axis machining centers. The impellers are made from difficult-to-cut titanium or nickel alloys, and the blades must be machined within tight tolerances. As a consequence, deflections of the tool and flexible workpiece can jeopardize the precision of the impellers during milling. This work is the first of a two part paper on cutting force prediction and feed optimization for the five-axis flank milling of an impeller. In Part I, a mathematical model for predicting cutting forces is presented for five-axis machining with tapered, helical, ball-end mills with variable pitch and serrated flutes. The cutter is divided axially into a number of differential elements, each with its own feed coordinate system due to five-axis motion. At each element, the total velocity due to translation and rotation is split into horizontal and vertical feed components, which are used to calculate total chip thickness along the cutting edge. The cutting forces for each element are calculated by transforming friction angle, shear stress and shear angle from an orthogonal cutting database to the oblique cutting plane. The distributed cutting load is digitally summed to obtain the total forces acting on the cutter and blade. The model can be used for general five-axis flank milling processes, and supports a variety of cutting tools. Predicted cutting force measurements are shown to be in reasonable agreement with those collected during a roughing operation on a prototype integrally bladed rotor (IBR).


2011 ◽  
Vol 2011 (01) ◽  
pp. 237-240 ◽  
Author(s):  
P. Roud ◽  
M. Zetek ◽  
I. Cesakova ◽  
J. Sklenicka ◽  
P. Kozmin

2012 ◽  
Vol 510 ◽  
pp. 50-53
Author(s):  
Chun Lei Li

Sources and measurement of cutting forces are studied to establish the steady-state cutting force prediction model. Modeling of work piece machining error is analyzed, a simplified process coordinate system is established, and the mathematical solving model of machining error within the work piece is given. The cutting force due to work piece bending deformation is studied, a work piece deformation factor error model is established based on steady-state cutting force and the prediction simulation of cutting forces and machining error is achieved.


Author(s):  
Yao Xi ◽  
Michael Bermingham ◽  
Gui Wang ◽  
Matthew Dargusch

The improvement in machinability during thermally assisted turning of the Ti-6Al-4V alloy has been investigated using finite element modeling. A 2D thermally assisted turning model was developed and validated by comparing the simulation results with experimental results. The effect of workpiece temperature on the cutting force and chip formation process was examined. The predicted cutting forces and chip morphologies from the simulation strongly correlated with the experimental results. It was observed from the simulation that the chip forms after the coalescence of two deformed regions in the shear band and that the cyclic cutting forces are strongly related to this chip formation process.


2011 ◽  
Vol 223 ◽  
pp. 85-92 ◽  
Author(s):  
Balázs Tukora ◽  
Tibor Szalay

In this paper a new method for instantaneous cutting force prediction is presented, in case of sculptured surface milling. The method is executed in a highly parallel manner by the general purpose graphics processing unit (GPGPU). As opposed to the accustomed way, the geometric information of the work piece-cutter touching area is gained directly from the multi-dexel representation of the work-piece, which lets us compute the forces in real-time. Furthermore a new procedure is introduced for the determination of the cutting force coefficients on the basis of measured instantaneous or average orthogonal cutting forces. This method can determine the shear and ploughing coefficients even while the cutting geometry is continuously altering, e.g. in the course of multi-axis machining. In this way the cutting forces can be predicted during the machining process without a priori knowledge of the coefficients. The proposed methods are detailed and verified in case of ball-end milling, but the model also enables the applying of general-end cutters.


2021 ◽  
Vol 11 (22) ◽  
pp. 10737
Author(s):  
Yucheng Li ◽  
Xu Zhang ◽  
Cui Wang

The friction behavior in the tool-chip interface is an essential issue in aluminum matrix composite material (AMCM) turning operations. Compared with conventional cutting, the elliptical vibration (EVC) cutting AMCM has attractive advantages, such as low friction, small cutting forces, etc. However, the friction mechanism of the EVC cutting AMCM is still inadequate, especially the model for cutting forces analyzing and predicting, which hinders the application of EVC in the processing of AMCM. In this paper, a cutting force prediction model for EVC cutting SiCp/Al is established, which is based on the three-phase friction (TPF) theory. The friction components are evaluated and predicted at the tool-chip interface (TCI), tool-particle interface (TPI) and tool-matrix (TMI), respectively. In addition, the tool-chip contact length and SiC particle volume fraction were defined strictly and the coefficient of friction was predicted. Based on the Johnson-Cook constitutive model, the experiment was conducted on SiCp/Al. The cutting speed and tool-chip contact length were used as input parameters of the friction model, and the dynamic changes of cutting force and stress distribution were analyzed. The results shown that when cutting speed reaches 574 m/min, the tool-chip contact length decreases to 0.378 mm. When the cutting speed exceeds 658 m/min, the cutting force decreases to a minimum of 214.9 N and remains stable. In addition, compared with conventional cutting, the proposed prediction model can effectively reduce the cutting force.


2010 ◽  
Vol 154-155 ◽  
pp. 38-41
Author(s):  
Rong Xin Tian ◽  
Zhen Chao Yang ◽  
Ding Hua Zhang ◽  
Xin Chun Huang ◽  
Yong Shou Liang

In order to provide theory basis and experimental evidence for optimizing milling parameters, the cutting force prediction models for milling of Ti6Al4V with uncoated cemented carbide tool were built based on single factor method. The significances of the cutting force prediction models were checked. The effects of milling speed, feed per tooth, milling depth and milling width on cutting forces were also studied. The results show that the built prediction models can be applied effectively to predict the cutting forces in milling of Ti6Al4V in the experiment parameters range. Milling depth has highly obvious influence on cutting forces among these milling parameters. The cutting forces decrease with the milling speed increasing, and increase with feed per tooth, milling depth and milling width.


Sign in / Sign up

Export Citation Format

Share Document