scholarly journals Statistical assessment of annual patterns in coastal extreme wave conditions

2013 ◽  
Author(s):  
J. L. Vega ◽  
J. González ◽  
G. Rodríguez
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Espen Engebretsen ◽  
Sverre K. Haver ◽  
Dag Myrhaug

In design of offshore wind turbines, extreme wave conditions are of interest. Usually, the design wave condition is taken as the sea state corresponding to an annual exceedance probability of 2 × 10−2, i.e., a return period of 50 years. A possible location for a future wind farm, consisting of bottom fixed wind turbines, is the Doggerbank area. The water depth in this area varies from about 60 m in the north to about 20 m in the south. The hindcast database NORA10 provides sea state characteristics from 1957 to present over a domain covering Doggerbank. Regarding the deeper areas just north of Doggerbank, this hindcast model is found to be of good quality. Larger uncertainties are associated with the hindcast results as we approach shallower water further south. The purpose of the present study is to compare sea state evolution over Doggerbank as reflected by NORA10 with the results of the commonly used shallow water hindcast model SWAN. The adequacy of the default parameters of SWAN for reflecting changes in wave conditions over a sloping bottom is investigated by comparison with model test results. Extreme wave conditions for two locations 102.5 km apart in a north–south direction are established using NORA10. This is done using both, an all sea states approach and a peak over threshold (POT) approach. Assuming the extremes for the northern position to represent good estimates, the wave evolution southward is analyzed using SWAN. The extreme condition obtained from NORA10 in the northern position is used as input to SWAN and the results from the two hindcast models are compared in the southern position. SWAN seems to suggest a somewhat faster decay over Doggerbank compared to NORA10.


Author(s):  
David P. Callaghan ◽  
Jeff Callaghan ◽  
Peter Nielsen ◽  
Tom Baldock

Author(s):  
Günther F. Clauss ◽  
Marco Klein ◽  
Carlos Guedes Soares ◽  
Nuno Fonseca

In the last years the identification and investigation of critical wave sequences regarding offshore structure responses became one of the main topics in the ocean engineering community. Thereby the area of interest covers the entire field of application spectra at sea — from efficient and economic offshore operations in moderate sea states to reliability as well as survival in extreme wave conditions. For most cases, the focus lies on limiting criteria for the design, such as maximum global loads, maximum relative motions between two or more vessels or maximum accelerations, at which the floating structure has to operate or to survive. These criteria are typically combined with a limiting characteristic sea state (Hs, Tp) or a rogue wave. For the investigation of offshore structures as well as the identification of critical wave sequences, different approaches are available — most of them are based on linear transfer functions as it is an efficient procedure for the fast holistic evaluation. But, for some cases the linear method approach implies uncertainties due to nonlinear response behavior, in particular in extreme wave conditions. This paper presents an approach to these challenges, a response based optimization tool for critical wave sequence detection. This tool, which has been successfully introduced for the evaluation of the applicability of a multi-body system based on the linear method approach, is adjusted to a nonlinear task — the vertical bending moment of a chemical tanker in extreme wave conditions. Therefore a nonlinear strip theory solver is introduced into the optimization routine to capture the nonlinear effects on the vertical bending moment due to steep waves acting on large bow flares. The goal of the procedure is to find a worst case wave sequence for a certain critical sea state. This includes intensive numerical investigation as well as model test validation.


2020 ◽  
Vol 8 (4) ◽  
pp. 289 ◽  
Author(s):  
Vincent S. Neary ◽  
Seongho Ahn ◽  
Bibiana E. Seng ◽  
Mohammad Nabi Allahdadi ◽  
Taiping Wang ◽  
...  

Best practices and international standards for determining n-year return period extreme wave (sea states) conditions allow wave energy converter designers and project developers the option to apply simple univariate or more complex bivariate extreme value analysis methods. The present study compares extreme sea state estimates derived from univariate and bivariate methods and investigates the performance of spectral wave models for predicting extreme sea states at buoy locations within several regional wave climates along the US East and West Coasts. Two common third-generation spectral wave models are evaluated, a WAVEWATCH III® model with a grid resolution of 4 arc-minutes (6–7 km), and a Simulating WAves Nearshore model, with a coastal resolution of 200–300 m. Both models are used to generate multi-year hindcasts, from which extreme sea state statistics used for wave conditions characterization can be derived and compared to those based on in-situ observations at National Data Buoy Center stations. Comparison of results using different univariate and bivariate methods from the same data source indicates reasonable agreement on average. Discrepancies are predominantly random. Large discrepancies are common and increase with return period. There is a systematic underbias for extreme significant wave heights derived from model hindcasts compared to those derived from buoy measurements. This underbias is dependent on model spatial resolution. However, simple linear corrections can effectively compensate for this bias. A similar approach is not possible for correcting model-derived environmental contours, but other methods, e.g., machine learning, should be explored.


1975 ◽  
Vol 80 (3) ◽  
pp. 377-379 ◽  
Author(s):  
Marshall D. Earle
Keyword(s):  

Author(s):  
Espen Engebretsen ◽  
Sverre K. Haver ◽  
Dag Myrhaug

In design of offshore wind turbines, extreme wave conditions are of interest. Usually, the design wave condition is taken as the sea state corresponding to an annual exceedance probability of 2·10−2, i.e. a return period of 50 years. A possible location for a future wind farm, consisting of bottom fixed wind turbines, is the Doggerbank area, see Figure 1. The water depth in this area varies from about 60m in the north to about 20m in the south. The hindcast database NORA10 provides sea state characteristics from 1957 to present over a domain covering Doggerbank. Regarding the deeper areas just north of Doggerbank, this hindcast model is found to be of good quality. Larger uncertainties are associated with the hindcast results as we approach shallower water further south. The purpose of the present study is to compare sea state evolution over Doggerbank as reflected by NORA10 with the results of commonly used shallow water hindcast model SWAN. The adequacy of the default parameters of SWAN for reflecting changes in wave conditions over a sloping bottom is investigated by comparison with model test results. Extreme wave conditions for two locations 102.5km apart in a north–south direction are established using NORA10. This is done using both an all sea states approach and a peak over threshold approach. Assuming the extremes for the northern position to represent good estimates, the wave evolution southwards is analyzed using SWAN. The extreme condition obtained from NORA10 in the northern position is used as input to SWAN and the results from the two hindcast models are compared in the southern position. SWAN seems to suggest a somewhat faster decay over Doggerbank compared to NORA10.


Weather ◽  
2008 ◽  
Vol 63 (12) ◽  
pp. 352-355 ◽  
Author(s):  
Jon Turton ◽  
Peter Fenna

Author(s):  
SVERRE BJØRDAL ◽  
SVEIN VOLD ◽  
GISLI VIGGOSSON ◽  
SIGURDUR SIGURDURSON
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document