scholarly journals A fault diagnosis approach for railway track circuits trimming capacitors using EMD and Teager Energy Operator

Author(s):  
S. P. Sun ◽  
H. B. Zhao ◽  
G. Zhou
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Longlong Li ◽  
Yahui Cui ◽  
Runlin Chen ◽  
Lingping Chen ◽  
Lihua Wang

The extraction of impulsive signatures from a vibration signal is vital for fault diagnosis of rolling element bearings, which are always whelmed by noise, especially in the early stage of defect development. Aiming at the weak defect diagnosis, kurtosis of Teager energy operator (KTEO) spectrum is employed to indicate the fault information capacity of a spectrum, and considering the accumulative effect of a singular component, accumulative kurtosis of TEO (AKTEO) is firstly proposed to determine the proper signal reconstructed order during vibration signal processing using singular value decomposition (SVD). Then, a vibration processing scheme named SVD-AKTEO is designed where an iteration is employed to reflect an accumulative singular effect by kurtosis of TEO spectrum. Finally, the fault diagnosis results can be extracted from the TEO spectrum output by SVD-AKTEO. Simulation data and real data from a run-to-failure experiment of a rolling bearing are adopted to validate the efficiency, and comparative analysis demonstrates the feasibility to detect the early defect of the rolling bearing.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Xingxing Jiang ◽  
Shunming Li ◽  
Chun Cheng

Vibration signals of the defect rolling element bearings are usually immersed in strong background noise, which make it difficult to detect the incipient bearing defect. In our paper, the adaptive detection of the multiresonance bands in vibration signal is firstly considered based on variational mode decomposition (VMD). As a consequence, the novel method for enhancing rolling element bearing fault diagnosis is proposed. Specifically, the method is conducted by the following three steps. First, the VMD is introduced to decompose the raw vibration signal. Second, the one or more modes with the information of fault-related impulses are selected through the kurtosis index. Third, Multiresolution Teager Energy Operator (MTEO) is employed to extract the fault-related impulses hidden in the vibration signal and avoid the negative value phenomenon of Teager Energy Operator (TEO). Meanwhile, the physical meaning of MTEO is also discovered in this paper. In addition, an idea of combining the multiresonance bands is constructed to further enhance the fault-related impulses. The simulation studies and experimental verifications confirm that the proposed method is effective for identifying the multiresonance bands and enhancing rolling element bearing fault diagnosis by comparing with Hilbert transform, EMD-based demodulation, and fast Kurtogram analysis.


Sign in / Sign up

Export Citation Format

Share Document