scholarly journals Plate motions, mantle convection and chaos

Author(s):  
S. Quéré ◽  
A. A. Berezin
2020 ◽  
Vol 224 (2) ◽  
pp. 961-972
Author(s):  
A G Semple ◽  
A Lenardic

SUMMARY Previous studies have shown that a low viscosity upper mantle can impact the wavelength of mantle flow and the balance of plate driving to resisting forces. Those studies assumed that mantle viscosity is independent of mantle flow. We explore the potential that mantle flow is not only influenced by viscosity but can also feedback and alter mantle viscosity structure owing to a non-Newtonian upper-mantle rheology. Our results indicate that the average viscosity of the upper mantle, and viscosity variations within it, are affected by the depth to which a non-Newtonian rheology holds. Changes in the wavelength of mantle flow, that occur when upper-mantle viscosity drops below a critical value, alter flow velocities which, in turn, alter mantle viscosity. Those changes also affect flow profiles in the mantle and the degree to which mantle flow drives the motion of a plate analogue above it. Enhanced upper-mantle flow, due to an increasing degree of non-Newtonian behaviour, decreases the ratio of upper- to lower-mantle viscosity. Whole layer mantle convection is maintained but upper- and lower-mantle flow take on different dynamic forms: fast and concentrated upper-mantle flow; slow and diffuse lower-mantle flow. Collectively, mantle viscosity, mantle flow wavelengths, upper- to lower-mantle velocities and the degree to which the mantle can drive plate motions become connected to one another through coupled feedback loops. Under this view of mantle dynamics, depth-variable mantle viscosity is an emergent flow feature that both affects and is affected by the configuration of mantle and plate flow.


2020 ◽  
Author(s):  
Philipp Hellenkamp ◽  
Claudia Stein ◽  
Ulrich Hansen

<p>Early periods of Earth's history are of great interest for the evolution of plate tectonics. For instance, neither the formation of lithospheric plates nor the nature of Archean plate tectonics is well known. As a remnant of the magma ocean period, a compositionally dense layer at the core-mantle boundary is assumed to interact with the convective flow of the Earth's mantle forming todays LLSVPs. Since plate motions are strongly coupled to the convection of mantle material, stabilizing effects of compositionally dense material have a profound impact on mantle convection and plate tectonics and will be of major importance for its evolution. <br>To investigate the influence of a dense basal layer, we use a numerical approach employing thermo-chemical mantle convection models with self-consistent plate generation. Considering different possible scenarios of the post magma ocean period we analyze the influence of different parameters, i.e. the density contrast between the dense basal material and the ambient mantle and the volume of the enriched layer. <br>Generally we observe that a stagnant lid forms which is initially mobilized episodically before turning to a permanently mobile surface. However, the temporal evolution of the episodic stage is considerably altered due to the presence of dense basal material. The time when an episode occurs, is determined by the mechanism which induces this mobilization. The mechanism itself is controlled by the density and volume of the enriched layer. Therefore, we distinguish between four different initiation mechanisms, which occur for different configurations of the density and volume of enriched material.</p>


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


Sign in / Sign up

Export Citation Format

Share Document