Scalable double-tier role and organization-based access control model

Author(s):  
H. R. Xiong ◽  
X. Y. Chen ◽  
B. Zhang ◽  
Y. Yang
Author(s):  
Zhixiong Zhang ◽  
Xinwen Zhang ◽  
Ravi Sandhu

This chapter addresses the problem that traditional role-base access control (RBAC) models do not scale up well for modeling security policies spanning multiple organizations. After reviewing recently proposed Role and Organization Based Access Control (ROBAC) models, an administrative ROBAC model called AROBAC07 is presented and formalized in this chapter. Two examples are used to motivate and demonstrate the usefulness of ROBAC. Comparison between AROBAC07 and other administrative RBAC models are given. We show that ROBAC/AROBAC07 can significantly reduce administration complexity for applications involving a large number of organizational units. Finally, an application compartment-based delegation model is introduced, which provides a method to construct administrative role hierarchy in AROBAC07. We show that the AROBAC07 model provides convenient ways to decentralize administrative tasks for ROBAC systems and scales up well for role-based systems involving a large number of organizational units.


2009 ◽  
Vol 28 (12) ◽  
pp. 3214-3216
Author(s):  
Yi DING ◽  
Yong FANG ◽  
An-min ZHOU ◽  
Jiao ZENG ◽  
Yu FAN

Author(s):  
Lihua Song ◽  
Xinran Ju ◽  
Zongke Zhu ◽  
Mengchen Li

AbstractInformation security has become a hot topic in Internet of Things (IoT), and traditional centralized access control models are faced with threats such as single point failure, internal attack, and central leak. In this paper, we propose a model to improve the access control security of the IoT, which is based on zero-knowledge proof and smart contract technology in the blockchain. Firstly, we deploy attribute information of access control in the blockchain, which relieves the pressure and credibility problem brought by the third-party information concentration. Secondly, encrypted access control token is used to gain the access permission of the resources, which makes the user's identity invisible and effectively avoids attribute ownership exposure problem. Besides, the use of smart contracts solves the problem of low computing efficiency of IoT devices and the waste of blockchain computing power resources. Finally, a prototype of IoT access control system based on blockchain and zero-knowledge proof technology is implemented. The test analysis results show that the model achieves effective attribute privacy protection, compared with the Attribute-Based Access Control model of the same security level, the access efficiency increases linearly with the increase of access scale.


Sign in / Sign up

Export Citation Format

Share Document