Repairable system warranty forecasting: considering a variable repair effectiveness factor

Author(s):  
P. Wang
2018 ◽  
Vol 17 (4) ◽  
pp. 813-820 ◽  
Author(s):  
Lacramioara Rusu ◽  
Maria Harja ◽  
Gabriela Ciobanu ◽  
Liliana Lazar

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1299
Author(s):  
Shengli Lv

This paper analyzed the multi-machine repairable system with one unreliable server and one repairman. The machines may break at any time. One server oversees servicing the machine breakdown. The server may fail at any time with different failure rates in idle time and busy time. One repairman is responsible for repairing the server failure; the repair rate is variable to adapt to whether the machines are all functioning normally or not. All the time distributions are exponential. Using the quasi-birth-death(QBD) process theory, the steady-state availability of the machines, the steady-state availability of the server, and other steady-state indices of the system are given. The transient-state indices of the system, including the reliability of the machines and the reliability of the server, are obtained by solving the transient-state probabilistic differential equations. The Laplace–Stieltjes transform method is used to ascertain the mean time to the first breakdown of the system and the mean time to the first failure of the server. The case analysis and numerical illustration are presented to visualize the effects of the system parameters on various performance indices.


2004 ◽  
Vol 36 (1) ◽  
pp. 116-138 ◽  
Author(s):  
Yonit Barron ◽  
Esther Frostig ◽  
Benny Levikson

An R-out-of-N repairable system, consisting of N independent components, is operating if at least R components are functioning. The system fails whenever the number of good components decreases from R to R-1. A failed component is sent to a repair facility. After a failed component has been repaired it is as good as new. Formulae for the availability of the system using Markov renewal and semi-regenerative processes are derived. We assume that either the repair times of the components are generally distributed and the components' lifetimes are phase-type distributed or vice versa. Some duality results between the two systems are obtained. Numerical examples are given for several distributions of lifetimes and of repair times.


2019 ◽  
Vol 141 (2) ◽  
pp. 797-806 ◽  
Author(s):  
Tibor Szűcs ◽  
Pal Szentannai

AbstractThe utilization of challenging solid fuels in the energy industry is urged by environmental requirements. The combustion kinetics of these fuel particles differs markedly from that of pulverized coal, mainly because of their larger sizes, irregular (nonspherical) shapes, and versatile internal pore structures. Although the intrinsic reaction kinetic measurements on very small amounts of finely ground samples of these particles are mostly available, a bridge toward their apparent reaction modeling is not evident. In this study, a method is introduced to build this bridge, the goodness of which was proved on the example of an industrially relevant biofuel. To do this, the results of a macroscopic combustion measurement with real samples in a well-modelable environment have to be used, and for considering some not negligible effects, 3D CFD modeling of the experimental environment is also to be applied. The outcome is the mass-related reaction effectiveness factor as a function of the rate of conversion. This variable can be considered as the active fraction of the entire particle mass on its periphery, and it can be used as the crucial element in modeling the combustion process of the same particle under other circumstances by including the actual boundary conditions. Another advantage of this method is its covering inherently the entire combustion process (water and volatile release, and char combustion) and also its applicability for reactors utilizing bigger particles like fluidized bed combustors.


2015 ◽  
Vol 32 (7) ◽  
pp. 2505-2517 ◽  
Author(s):  
Xiao-jian Yi ◽  
B.S. Dhillon ◽  
Jian Shi ◽  
Hui-na Mu ◽  
Hai-ping Dong

1997 ◽  
Vol 46 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J.A. Beiser ◽  
S.E. Rigdon

Sign in / Sign up

Export Citation Format

Share Document