scholarly journals Exhaust gas treatment technologies for pollutant emission abatement from fossil fuel power plants

Author(s):  
E. David ◽  
V. Stanciu ◽  
C. Sandru ◽  
A. Armeanu ◽  
V. Niculescu
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5716
Author(s):  
Jiun-Horng Tsai ◽  
Shih-Hsien Chen ◽  
Shen-Fong Chen ◽  
Hung-Lung Chiang

This study is an investigation of air pollutant emission abatement in the electricity generation sector from fossil-fuel power plants in Taiwan in 2014 and 2018. PM concentrations are determined by the results of regular tests, while SOx and NOx are determined by continuous emission monitoring systems (CEMS) of flue gas from power plants. The results indicate that electricity generation from fossil-fuel power plants increased by 13.8% from 2014 to 2018. However, emissions of air pollutants from fossil-fuel power plants declined during this period. The results indicate that the annual emissions of SOx, NOx, and PM were 40,826, 59,196, and 5363 tons per year (TPY), respectively, in 2014. The emissions decreased to 30,097 TPY (28% reduction) for SOx, 48,530 TPY (18% reduction) for NOx, and 4496 TPY (16% reduction) for PM in 2018. The ensemble mean values of each air pollutant emission factor also decreased significantly. SOx emissions decreased from 0.2443 to 0.1583 mg/kWh (35% reduction). NOx emissions decreased from 0.3542 to 0.2552 g/kWh (28% reduction). PM emissions decreased from 0.0321 to 0.0236 mg/kWh (26.5% reduction). The results indicated that phasing out of high-pollutant generating units and switching the fuel from coal to natural gas could abate the emissions of SOx and PM, and NOx emissions could be abated by introducing control devices. In addition, new power generation sectors will be constructed and equipped with ultra-low emission control systems to reduce air pollution and create a cleaner and healthier electricity generation system in Taiwan.


1985 ◽  
Vol 107 (4) ◽  
pp. 267-269 ◽  
Author(s):  
S. Z. Wu ◽  
D. N. Wormley ◽  
D. Rowell ◽  
P. Griffith

An evaluation of systems for control of fossil fuel power plant boiler and stack implosions has been performed using computer simulation techniques described in a companion paper. The simulations have shown that forced and induced draft fan control systems and induced draft fan bypass systems reduce the furnace pressure excursions significantly following a main fuel trip. The limitations of these systems are associated with actuator range and response time and stack pressure excursions during control actions. Preliminary study suggests that an alternative control solution may be achieved by discharging steam into the furnace after a fuel trip.


2019 ◽  
Vol 11 (9) ◽  
pp. 1117 ◽  
Author(s):  
Haopeng Zhang ◽  
Qin Deng

The frequent hazy weather with air pollution in North China has aroused wide attention in the past few years. One of the most important pollution resource is the anthropogenic emission by fossil-fuel power plants. To relieve the pollution and assist urban environment monitoring, it is necessary to continuously monitor the working status of power plants. Satellite or airborne remote sensing provides high quality data for such tasks. In this paper, we design a power plant monitoring framework based on deep learning to automatically detect the power plants and determine their working status in high resolution remote sensing images (RSIs). To this end, we collected a dataset named BUAA-FFPP60 containing RSIs of over 60 fossil-fuel power plants in the Beijing-Tianjin-Hebei region in North China, which covers about 123 km 2 of an urban area. We compared eight state-of-the-art deep learning models and comprehensively analyzed their performance on accuracy, speed, and hardware cost. Experimental results illustrate that our deep learning based framework can effectively detect the fossil-fuel power plants and determine their working status with mean average precision up to 0.8273, showing good potential for urban environment monitoring.


2021 ◽  
Vol 79 (7) ◽  
pp. 728-738
Author(s):  
Caique Lara ◽  
Julie Villamil ◽  
Anthony Abrahao ◽  
Aparna Aravelli ◽  
Guilherme Daldegan ◽  
...  

Fossil fuel power plants are complex systems containing multiple components that require periodic health monitoring. Failures in these systems can lead to increased downtime for the plant, reduction of power, and significant cost for repairs. Inspections of the plant’s superheater tubes are typically manual, laborious, and extremely time-consuming. This is due to their small diameter size (between 1.3 and 7.6 cm) and the coiled structure of the tubing. In addition, the tubes are often stacked close to each other, limiting access for external inspection. This paper presents the development and testing of an electrically powered pipe crawler that can navigate inside 5 cm diameter tubes and provide an assessment of their health. The crawler utilizes peristaltic motion within the tubes via interconnected modules for gripping and extending. The modular nature of the system allows it to traverse through straight sections and multiple 90° and 180° bends. Additional modules in the system include an ultrasonic sensor for tube thickness measurements, as well as environmental sensors, a light detecting and ranging (LiDAR) sensor, and camera. These modules utilize a gear system that allows for 360° rotation and provides a means to inspect the entire internal circumference of the tubes.


1971 ◽  
Vol 13 (1) ◽  
pp. 391-401 ◽  
Author(s):  
B.P. Breen ◽  
A.W. Bell ◽  
N. Bayard de Volo ◽  
F.A. Bagwell ◽  
K. Rosenthal

Sign in / Sign up

Export Citation Format

Share Document