scholarly journals Fate and removal of pharmaceuticals and personal care products (PPCPs) in a conventional activated sludge treatment process

2010 ◽  
Author(s):  
S. Suarez ◽  
F. Omil ◽  
J. M. Lema
Chemosphere ◽  
2004 ◽  
Vol 55 (1) ◽  
pp. 81-91 ◽  
Author(s):  
A.M. Kipopoulou ◽  
A. Zouboulis ◽  
C. Samara ◽  
Th. Kouimtzis

1988 ◽  
Vol 20 (11-12) ◽  
pp. 125-130 ◽  
Author(s):  
J. P. Salanitro ◽  
G. C. Langston ◽  
P. B. Dorn ◽  
L. Kravetz

The primary degradation of a linear alcohol ethoxylate (AE) and a branched nonylphenol ethoxylate (NPE) was investigated in bench-scale activated sludge units treating a synthetic sewage feed. Biotreaters were gradually adapted to 10-100 mg/ℓ surfactant and effluents monitored for loss of nonionic ethoxylate, foaming, feed BOD removal, nitrification and biosolids growth. Both surfactants were degraded at influent doses of 10-40 mg/ℓ. Substantial BOD breakthrough, loss of nitrification, aerator foaming and incomplete removal of the NPE surfactant occurred when fed at 80 and 100 mg/ℓ while the unit treating AE was unaffected by high surfactant levels. Comparative aquatic toxicity of the biotreated waste at high surfactant levels indicated that the NPE effluent was acutely toxic (EC50, 7-15% effluent) to the fathead minnow and Daphnia while that of the AE unit was non-toxic (EC50, > 100% effluent) to these same species. These studies indicate that the treatment of wastes containing high levels of NPE ethoxylates may adversely impact an activated sludge process in incomplete degradation and foaming, impaired BOD removal, loss in nitrification and the formation of toxic effluents. AE surfactants, however, undergo extensive microbial degradation and cause little or no impact on the activated sludge treatment process.


Author(s):  
Sandipan Prasad Chakravarty ◽  
Aniket Roy ◽  
Prasanta Roy

This paper deals with the design of a pre-compensated multi-variable quantitative feedback theory (QFT)-based fully populated matrix controller for an activated sludge treatment process (ASTP) of a waste water treatment plant (WWTP). The regulation of the concentration of biochemical oxygen demand ([Formula: see text]) and ammonium-ion ([Formula: see text]) is the control objective. The plant dynamics are obtained using physical laws available in the literature. The parametric uncertainty is quantified from the measurement data obtained from a real ASTP of an oil refinery. The model is duly cross-validated. A novel technique is proposed to design a pre-compensator that will enhance the diagonal dominance of the plant transfer function matrix. A diagonal controller and a pre-filter, are then designed using a sequential multi-input multi-output (MIMO) QFT-based methodology to meet a set of performance specifications such as relative stability, disturbance rejection, robust tracking and so forth. The simulation results validate the effectiveness of the proposed control scheme. A comparative analysis with reported works shows that the proposed control scheme outperforms some of the reported control strategies.


Sign in / Sign up

Export Citation Format

Share Document