scholarly journals STUDY OF THE START-UP OF AN UPFLOW LABORATORY-SCALE ANAEROBIC SLUDGE BLANKET FOR THE TREATMENT OF SLAUGHTERHOUSE WASTEWATER

Author(s):  
MARTHA N. CHOLLOM ◽  
SUDESH RATHILAL ◽  
FEROZ M. SWALAHA ◽  
BABATUNDE F. BAKARE ◽  
EMMANUEL KWEINOR TETTEH
2020 ◽  
Vol 21 (1) ◽  
pp. 31-39
Author(s):  
Zulkarnaini Zulkarnaini ◽  
Reri Afrianita ◽  
Ilham Hagi Putra

ABSTRACTAnammox process is a more practical alternative in biological nitrogen removal compared to conventional nitrification-denitrification processes. This process conducted at the optimum temperature of 370C. Indonesia, as a tropical country, has the potential for the application of anammox processes to remove nitrogen in wastewater. The purpose of this study was to analyze the efficiency of nitrogen removal in the anammox process using the Up-Flow Anaerobic Sludge Blanket (UASB) reactor at ambient temperature with variations in the hydraulic retention time (HRT) of 24 hours and 12 hours, at the laboratory scale. Samples are measured twice a week using a UV-Vis spectrophotometer. As a seeding sludge for start-up, the reactor was inoculated with granular anammox bacteria genus Candidatus Brocadia. At the stable operation, the ratio of ΔNO2--N:ΔNH4+-N and ΔNO3--N:ΔNH4+-N approach the stoichiometry of the anammox process were 1.20 and 0.21, respectively. The performance of nitrogen removal with 24-hour HRT obtained a maximum nitrogen removal rate (NRR) of 0.113 kg-N/m3.d with nitrogen loading rate (NLR) 0.14 kg-N/m3.d, and at 12-hour HRT, maximum NRR  of 0.196 kg-N/m3.d with NLR 0,28 kg-N/m3.d. Ammonium Conversion Efficiency (ACE) and Nitrogen Removal Efficiency (NRE) maximum for HRT 24 hours were 82% and 77%, respectively while HRT 12 hours were 72% and 68%, respectively. The anammox process operated stably in the tropical temperature with a temperature range of 23-280C on a laboratory scale using the UASB reactor.Keywords: anammox, nitrogen, temperature, tropical, uasb.ABSTRAKProses anammox menjadi alternatif yang lebih efektif dalam penyisihan nitrogen secara biologi dibandingkan dengan proses konvensional nitrifikasi-denitrifikasi. Proses ini berlangsung optimum pada suhu 370C. Indonesia sebagai negara tropis memiliki potensi untuk aplikasi proses anammox untuk menghilangkan nitrogen pada air limbah. Penelitian ini bertujuan untuk menganalisis efesiensi penyisihan nitrogen pada proses anammox menggunakan Up-Flow Anaerobic Sludge Blanket (UASB) reaktor pada suhu ambien dengan variasi Waktu Tinggal Hidrolik (WTH) 24 jam dan 12 jam, pada skala laboratorium. Sampel diukur dua kali setiap minggu menggunakan spektrofotometer UV-Vis. Sebagai seeding sludge (lumpur biakan) untuk start-up (memulai) reaktor digunakan bakteri anammox genus Candidatus Brocadia berbentuk granular. Berdasarkan hasil pengukuran, didapatkan nilai rasio ΔNO2--N:ΔNH4+-N dan ΔNO3--N:ΔNH4+-N mendekati stoikiometri proses anammox yaitu 1,20 dan 0,21. Kinerja penyisihan nitrogen dengan WTH 24 jam didapatkan nilai tingkat penyisihan nitrogen (TPyN ) maksimum 0,113 kg-N/m3.h pada tingkat pemuatan nitrogen (TPN) 0,14 kg-N/m3.h, dan WTH 12 jam nilai TPyN  maksimum 0,196 kg-N/m3.h pada TPN 0,28 kg-N/m3.h. Nilai efisiensi konversi amonia (EKA) dan efisiensi penyisihan nitrogen (EPN) maksimum pada WTH 24 jam berturut-turut adalah 82% dan 77%, sedangkan pada WTH 12 jam berturut-turut adalah 72% dan 68%. Penelitian membuktikan bahwa proses anammox dapat berlangsung stabil pada daerah tropis dengan suhu terukur 21-290C pada skala laboratorium menggunakan UASB reaktor. Kata kunci: Anammox, nitrogen, temperatur, tropis, uasb.


2001 ◽  
Vol 44 (4) ◽  
pp. 83-88 ◽  
Author(s):  
V. Del Nery ◽  
M. H.Z. Damianovic ◽  
F. G. Barros

This work studied the performance of the dissolved air flotation (DAF) system and the start-up and the operation of two 450 m3 UASB reactors in a poultry slaughterhouse in Sorocaba, Brazil. The DAF presented reduction efficiency of grease and fats, suspended solids and COD 50% higher. The reactors were seeded with non-adapted sludge. The average COD of the reactor influent was 2,695mg/L; and the initial organic loading rate (OLR) and the initial sludge loading rate at the start-up were 0.51 kg COD/m3.day and 0.04 kg COD/kg VTS.day, respectively. The start-up period was 144 days. During this time the reactor flow rate and OLR were gradually increased. At the reactor start-up, the maximum OLR value was 2.1 kg COD/m3.day, the COD reduction was higher than 80%, and the concentration of volatile fatsty acids (VFA) was below 100mg/L. The COD reductions, considering the reactor effluent raw COD and soluble COD were similar throughout the period studied in both reactors. The reactor effluent raw COD was approximately 10% higher than the soluble COD until the 225th day of operation. From the 225th day of operation this value increased 20%-30% due to the sludge washout. The effluent soluble COD reduction, the effluent VFA concentration and the operational stability attested the good performance of UASB reactors in poultry slaughterhouse wastewater treatment.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 109-120 ◽  
Author(s):  
M. Yoda ◽  
M. Kitagawa ◽  
Y. Miyaji

The anaerobic expanded micro-carrier bed (MCB) process, which utilizes fine (50-100 microns) support materials as expanded bed media, was found to have the ability to cultivate granular sludge similar to that formed in the upflow anaerobic sludge blanket (UASB) process. Two laboratory-scale MCB reactors were studied with VFA and glucose wastewaters to clarify the role of the micro-carrier and the influence of substrates on granular sludge formation. Based on these results, a scale-up model with a reactor volume of 800 1 was successfully operated using molasses wastewater to demonstrate the feasibility of granular sludge formation in the MCB process.


2011 ◽  
Vol 63 (5) ◽  
pp. 877-884 ◽  
Author(s):  
P. Mijalova Nacheva ◽  
M. Reyes Pantoja ◽  
E. A. Lomelí Serrano

The performance of an upflow anaerobic sludge blanket (UASB) reactor operated at ambient temperature (20.9–25.2°C) was analysed for the treatment of slaughterhouse wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 15 L effective volume. Four organic loads were applied and the process performance was evaluated. The COD removal rate increased with the load rise from 4 to 15 kg COD.m−3.d−1. Removal efficiencies of 90% were obtained with a load of 15 kg COD.m−3.d−1. The entrapment of suspended solids in the sludge blanket was greater in proportion during the first two stages due to the low upflow velocities used when loads of 4 and 7 kg COD.m−3.d−1 were evaluated. This phenomenon did not affect the structure of the biological grains or their methanogenic activity. More than 50% of the organic nitrogen was degraded, causing a 3% increase of ammonia concentration. The concentrations of the volatile fatty acids were not high and the wastewater alkalinity was enough to prevent acidification. The yield coefficient of methane production increased with the load rise, reaching 0.266 m3/kg CODremoved at 15 kg COD.m−3.d−1 organic load. The UASB reactor is a good option for the biological treatment of pre-treated slaughterhouse wastewater. However, additional treatment is required in order to accomplish the water quality requirements in discharges to water bodies.


Sign in / Sign up

Export Citation Format

Share Document