The use of upflow anaerobic sludge blanket reactors in the treatment of poultry slaughterhouse wastewater

2001 ◽  
Vol 44 (4) ◽  
pp. 83-88 ◽  
Author(s):  
V. Del Nery ◽  
M. H.Z. Damianovic ◽  
F. G. Barros

This work studied the performance of the dissolved air flotation (DAF) system and the start-up and the operation of two 450 m3 UASB reactors in a poultry slaughterhouse in Sorocaba, Brazil. The DAF presented reduction efficiency of grease and fats, suspended solids and COD 50% higher. The reactors were seeded with non-adapted sludge. The average COD of the reactor influent was 2,695mg/L; and the initial organic loading rate (OLR) and the initial sludge loading rate at the start-up were 0.51 kg COD/m3.day and 0.04 kg COD/kg VTS.day, respectively. The start-up period was 144 days. During this time the reactor flow rate and OLR were gradually increased. At the reactor start-up, the maximum OLR value was 2.1 kg COD/m3.day, the COD reduction was higher than 80%, and the concentration of volatile fatsty acids (VFA) was below 100mg/L. The COD reductions, considering the reactor effluent raw COD and soluble COD were similar throughout the period studied in both reactors. The reactor effluent raw COD was approximately 10% higher than the soluble COD until the 225th day of operation. From the 225th day of operation this value increased 20%-30% due to the sludge washout. The effluent soluble COD reduction, the effluent VFA concentration and the operational stability attested the good performance of UASB reactors in poultry slaughterhouse wastewater treatment.

2011 ◽  
Vol 71-78 ◽  
pp. 2103-2106
Author(s):  
Ming Yue Zheng ◽  
Ming Xia Zheng ◽  
Kai Jun Wang ◽  
Hai Yan

The performance of upflow anaerobic sludge blanket (UASB) fed with three metabolic intermediate (acetate, ethanol, and propionate) respectively was studied. The degradation of metabolic intermediate were investigated to discuss the reason for propionate inhibition problem in anaerobic treatment. The hydraulic retention time (HRT) in the reactors started with 8.0h.The yield rate of biogas were 237ml/gCOD, 242ml/gCOD, 218ml/gCOD for acetate, ethanol and propionate, respectively when finishing start-up under OLR of 5.0 kgCOD/(m3·d) (HRT=9.6h).The HRT remained constant 9.6h,and the substrate concentration was gradually increased from 1,000 to 16,000mg/L as COD,and the organic loading rates(OLR) was from 3.0 to 40.0 kgCOD/(m3·d).The maximum propionate concentration was 41.6 gHPr-COD/L at the organic loading rate of 43.9 kgCOD/(m3·d) (HRT, 9.6h) as well as acetate and ethanol.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 806 ◽  
Author(s):  
Mohammed Ali Musa ◽  
Syazwani Idrus ◽  
Hasfalina Che Man ◽  
Nik Norsyahariati Nik Daud

Cattle slaughterhouse wastewater (CSWW) with an average chemical oxygen demand (COD) and biochemical oxygen demand of 32,000 mg/L and 17,000 mg/L, respectively, can cause a severe environmental hazard if discharged untreated. Conventional upflow anaerobic sludge blanket (UASB) reactor is used in the treatment of slaughterhouse wastewater to meet the discharge standard limit of wastewater discharge set by the Department of Environment Malaysia (DOE). However, at higher loading rates the conventional systems are characterized by slow-growing microorganism resulting in long startup period, surface scum formation, and sludge washout. In this work, the performance of two laboratory scale (12 L) conventional (R1) and modified (R2) UASB reactors treating CSWW at mesophilic (36 ± 1 °C) condition were investigated. Both reactors were subjected to increasing organic loading rate (OLR) from 1.75 to 32 g L−1 day−1. The average COD, BOD5, and TSS removal efficiencies were ˃90%, at an OLR between 1.75 to 5 g L−1 day−1. The study revealed that R1 drastically reduced to 50, 53, and 43% with increasing OLR until 16 g L−1 day−1, whereas R2 maintained 76, 77, and 88% respectively, under the same OLR. Sign of reactor instability was very much pronounced in R1, showing poorly active Methanosaeta spp., whereas R2 showed a predominantly active Methanosarcina spp.


2015 ◽  
Vol 35 (2) ◽  
pp. 331-339 ◽  
Author(s):  
RONALDO FIA ◽  
ERLON L. PEREIRA ◽  
FÁTIMA R. L. FIA ◽  
DÉBORA G. EMBOABA ◽  
EMANUEL M. GOMES

This study aimed to evaluate the start-up of a horizontal anaerobic fixed bed reactor (HAFBR) followed by an upflow anaerobic sludge blanket (UASB) for the slaughterhouse wastewater treatment. HAFBR was filled with bamboo rings and had 1.2 m in length, 0.10 m in diameter and volume of 7.5 L. The UASB had the volume of 15 L. The HAFBR and UASB operated at organic loading rate and hydraulic retention time average of 8.46 and 3.77 kg m-3 d-1 of COD and 0.53 and 0.98 days, respectively. During 150 days of monitoring system it was found pH 6.8, relatively high values of bicarbonate alkalinity (> 1000 mg L-1) and reduced values of volatile acids (70 to 150 mg L-1), which afforded average removal efficiencies of COD total and total suspended solids of the order of 31 and 23% in HAFBR and 79% and 63% in UASB. It can be concluded that the generation and consumption of bicarbonate alkalinity and total volatile acids, thereby maintaining the pH during the study indicated stable operation of the reactors. The COD removal in the reactors was satisfactory especially when it considers that the assessment was conducted in a period of adaptation of organisms to the effluent and also the high organic load applied during this period.


1999 ◽  
Vol 40 (8) ◽  
pp. 57-62 ◽  
Author(s):  
A. Pun˜al ◽  
J. M. Lema

The start-up and optimisation of a 380 m3 UASB reactor (Up-flow Anaerobic Sludge Blanket) treating wastewater from a fish-canning factory was carried out. At the beginning of the operation the Organic Loading Rate (OLR) was 1 kg COD/m3·d. Then, the load was gradually increased in steps of 50% OLR until the final capacity of the system (4 kg COD/m3·d) was achieved. Wastewater characteristics were highly dependent on the canned product (mussel, tuna, sardines, etc.). In spite of that, a stable operation working at a hydraulic retention time (HRT) of 2 days was maintained. Total Alkalinity (TA) always presented values higher than 3 g CaCO3/l, while the IA/TA ratio (Intermediate Alalinity/Total Alkalinity) was always maintained lower than 0.3. In order to improve granulation conditions, upward velocities from 0.5 to 0.8 m/h were applied. The highest values caused the washout of non-granulated biomass from the reactor, optimum operation being achieved at an upward velocity of 0.7 m/h.


2014 ◽  
Vol 953-954 ◽  
pp. 1105-1108 ◽  
Author(s):  
Seni Karnchanawong ◽  
Kraiwet Kabtum

The objective of this study was to investigate the toxicity of Na+and K+ions on performance of upflow anaerobic sludge blanket (UASB) system. Three laboratory-scale UASB reactors, 15.8 - l working volume, were employed with 1 reactor operated as control. They were loaded at organic loading rate (OLR) of 5 kg COD/(m3-d), treating synthetic wastewater with COD concentration ~ 5000 mg/l. Na+and K+ions were added in the range of 1010 - 7180 and 41 - 7320 mg/l, respectively. No toxicity was observed at influent Na+and K+concentrations up to 3340 and 2750 mg/l, respectively. Slight inhibitions on COD removal were founded at Na+and K+concentrations of 4610 and 3920 mg/l, respectively, but moderate effect on biogas production had occurred. When Na+and K+concentrations were increased to 7180 and 7320 mg/l, respectively, strong inhibitions were observed with COD removal dropped to 45.5 and 48.8 %, respectively. Ratios of biogas productions, as compared to the control reactor, were dropped to 0.31 and 0.32, respectively. Increasing cation concentrations had more detrimental effect on biogas production than COD removal.


Sign in / Sign up

Export Citation Format

Share Document