scholarly journals Towards A Relational Approach For Tool Creation By Robots

Author(s):  
Handy Wicaksono

Like a human, a robot may benefit from being able to use a tool to solve a complex task. When an appropriate tool is not available, a very useful ability for a robot would be to create a novel one based on its past experience. With the advent of inexpensive 3D printing, it is now possible to give robots such an ability, at least to create simple tools. We propose a method for learning how to use an object as a tool and, if needed, to design and construct a new tool.

Author(s):  
Handy Wicaksono ◽  
Claude Sammut

Like a human, a robot may benefit from being able to use a tool to solve a complex task. When an appropriate tool is not available, a very useful ability for a robot is to create a novel one based on its experience. With the advent of inexpensive 3D printing, it is now possible to give robots such an ability, at least to create simple tools. We proposed a method for learning how to use an object as a tool and, if needed, to design and construct a new tool. The robot began by learning an action model of tool use for a PDDL planner by observing a trainer. It then refined the model by learning by trial and error. Tool creation consisted of generalising an existing tool model and generating a novel tool by instantiating the general model. Further learning by experimentation was performed. Reducing the search space of potentially useful tools could be achieved by providing a tool ontology. We then used a constraint solver to obtain numerical parameters from abstract descriptions and use them for a ready-to-print design. We evaluated our system using a simulated and a real Baxter robot in two cases: hook and wedge. We found that our system performs tool creation successfully.


2020 ◽  
Vol 43 ◽  
Author(s):  
Kellen Mrkva ◽  
Luca Cian ◽  
Leaf Van Boven

Abstract Gilead et al. present a rich account of abstraction. Though the account describes several elements which influence mental representation, it is worth also delineating how feelings, such as fluency and emotion, influence mental simulation. Additionally, though past experience can sometimes make simulations more accurate and worthwhile (as Gilead et al. suggest), many systematic prediction errors persist despite substantial experience.


1978 ◽  
Vol 48 ◽  
pp. 7-29
Author(s):  
T. E. Lutz

This review paper deals with the use of statistical methods to evaluate systematic and random errors associated with trigonometric parallaxes. First, systematic errors which arise when using trigonometric parallaxes to calibrate luminosity systems are discussed. Next, determination of the external errors of parallax measurement are reviewed. Observatory corrections are discussed. Schilt’s point, that as the causes of these systematic differences between observatories are not known the computed corrections can not be applied appropriately, is emphasized. However, modern parallax work is sufficiently accurate that it is necessary to determine observatory corrections if full use is to be made of the potential precision of the data. To this end, it is suggested that a prior experimental design is required. Past experience has shown that accidental overlap of observing programs will not suffice to determine observatory corrections which are meaningful.


Author(s):  
K.H. Westmacott

Life beyond 1MeV – like life after 40 – is not too different unless one takes advantage of past experience and is receptive to new opportunities. At first glance, the returns on performing electron microscopy at voltages greater than 1MeV diminish rather rapidly as the curves which describe the well-known advantages of HVEM often tend towards saturation. However, in a country with a significant HVEM capability, a good case can be made for investing in instruments with a range of maximum accelerating voltages. In this regard, the 1.5MeV KRATOS HVEM being installed in Berkeley will complement the other 650KeV, 1MeV, and 1.2MeV instruments currently operating in the U.S. One other consideration suggests that 1.5MeV is an optimum voltage machine – Its additional advantages may be purchased for not much more than a 1MeV instrument. On the other hand, the 3MeV HVEM's which seem to be operated at 2MeV maximum, are much more expensive.


2000 ◽  
Author(s):  
Nicole Charves ◽  
Amy Clemens
Keyword(s):  

1959 ◽  
Author(s):  
J. S. Kidd ◽  
Robert G. Kinkade
Keyword(s):  

2012 ◽  
Author(s):  
Jessica L. Siegel ◽  
Michael S. Christian ◽  
Adela S. Garza ◽  
Aleksander P. J. Ellis

Sign in / Sign up

Export Citation Format

Share Document