scholarly journals Autonomously Reusing Knowledge in Multiagent Reinforcement Learning

Author(s):  
Felipe Leno Da Silva ◽  
Matthew E. Taylor ◽  
Anna Helena Reali Costa

Autonomous agents are increasingly required to solve complex tasks; hard-coding behaviors has become infeasible. Hence, agents must learn how to solve tasks via interactions with the environment. In many cases, knowledge reuse will be a core technology to keep training times reasonable, and for that, agents must be able to autonomously and consistently reuse knowledge from multiple sources, including both their own previous internal knowledge and from other agents. In this paper, we provide a literature review of methods for knowledge reuse in Multiagent Reinforcement Learning. We define an important challenge problem for the AI community, survey the existent methods, and discuss how they can all contribute to this challenging problem. Moreover, we highlight gaps in the current literature, motivating "low-hanging fruit'' for those interested in the area. Our ambition is that this paper will encourage the community to work on this difficult and relevant research challenge.

2020 ◽  
Author(s):  
Felipe Leno Da Silva ◽  
Anna Helena Reali Costa

Reinforcement Learning (RL) is a powerful tool that has been used to solve increasingly complex tasks. RL operates through repeated interactions of the learning agent with the environment, via trial and error. However, this learning process is extremely slow, requiring many interactions. In this thesis, we leverage previous knowledge so as to accelerate learning in multiagent RL problems. We propose knowledge reuse both from previous tasks and from other agents. Several flexible methods are introduced so that each of these two types of knowledge reuse is possible. This thesis adds important steps towards more flexible and broadly applicable multiagent transfer learning methods.


2019 ◽  
Vol 64 ◽  
pp. 645-703 ◽  
Author(s):  
Felipe Leno Da Silva ◽  
Anna Helena Reali Costa

Multiagent Reinforcement Learning (RL) solves complex tasks that require coordination with other agents through autonomous exploration of the environment. However, learning a complex task from scratch is impractical due to the huge sample complexity of RL algorithms. For this reason, reusing knowledge that can come from previous experience or other agents is indispensable to scale up multiagent RL algorithms. This survey provides a unifying view of the literature on knowledge reuse in multiagent RL. We define a taxonomy of solutions for the general knowledge reuse problem, providing a comprehensive discussion of recent progress on knowledge reuse in Multiagent Systems (MAS) and of techniques for knowledge reuse across agents (that may be actuating in a shared environment or not). We aim at encouraging the community to work towards reusing all the knowledge sources available in a MAS. For that, we provide an in-depth discussion of current lines of research and open questions.


Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

AbstractWith the developing of Internet of Things (IoT) and mobile edge computing (MEC), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


2015 ◽  
Vol 25 (3) ◽  
pp. 471-482 ◽  
Author(s):  
Bartłomiej Śnieżyński

AbstractIn this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer-pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process


Author(s):  
Nancy Fulda ◽  
Daniel Ricks ◽  
Ben Murdoch ◽  
David Wingate

Autonomous agents must often detect affordances: the set of behaviors enabled by a situation. Affordance extraction is particularly helpful in domains with large action spaces, allowing the agent to prune its search space by avoiding futile behaviors. This paper presents a method for affordance extraction via word embeddings trained on a tagged Wikipedia corpus. The resulting word vectors are treated as a common knowledge database which can be queried using linear algebra. We apply this method to a reinforcement learning agent in a text-only environment and show that affordance-based action selection improves performance in most cases. Our method increases the computational complexity of each learning step but significantly reduces the total number of steps needed. In addition, the agent's action selections begin to resemble those a human would choose.


Sign in / Sign up

Export Citation Format

Share Document