scholarly journals Progressive Transfer Learning for Person Re-identification

Author(s):  
Zhengxu Yu ◽  
Zhongming Jin ◽  
Long Wei ◽  
Jishun Guo ◽  
Jianqiang Huang ◽  
...  

Model fine-tuning is a widely used transfer learning approach in person Re-identification (ReID) applications, which fine-tuning a pre-trained feature extraction model into the target scenario instead of training a model from scratch. It is challenging due to the significant variations inside the target scenario, e.g., different camera viewpoint, illumination changes, and occlusion. These variations result in a gap between the distribution of each mini-batch and the distribution of the whole dataset when using mini-batch training. In this paper, we study model fine-tuning from the perspective of the aggregation and utilization of the global information of the dataset when using mini-batch training. Specifically, we introduce a novel network structure called Batch-related Convolutional Cell (BConv-Cell), which progressively collects the global information of the dataset into a latent state and uses this latent state to rectify the extracted feature. Based on BConv-Cells, we further proposed the Progressive Transfer Learning (PTL) method to facilitate the model fine-tuning process by joint training the BConv-Cells and the pre-trained ReID model. Empirical experiments show that our proposal can improve the performance of the ReID model greatly on MSMT17, Market-1501, CUHK03 and DukeMTMC-reID datasets. The code will be released later on at \url{https://github.com/ZJULearning/PTL}

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Tam ◽  
Mounir Boukadoum ◽  
Alexandre Campeau-Lecours ◽  
Benoit Gosselin

AbstractMyoelectric hand prostheses offer a way for upper-limb amputees to recover gesture and prehensile abilities to ease rehabilitation and daily life activities. However, studies with prosthesis users found that a lack of intuitiveness and ease-of-use in the human-machine control interface are among the main driving factors in the low user acceptance of these devices. This paper proposes a highly intuitive, responsive and reliable real-time myoelectric hand prosthesis control strategy with an emphasis on the demonstration and report of real-time evaluation metrics. The presented solution leverages surface high-density electromyography (HD-EMG) and a convolutional neural network (CNN) to adapt itself to each unique user and his/her specific voluntary muscle contraction patterns. Furthermore, a transfer learning approach is presented to drastically reduce the training time and allow for easy installation and calibration processes. The CNN-based gesture recognition system was evaluated in real-time with a group of 12 able-bodied users. A real-time test for 6 classes/grip modes resulted in mean and median positive predictive values (PPV) of 93.43% and 100%, respectively. Each gesture state is instantly accessible from any other state, with no mode switching required for increased responsiveness and natural seamless control. The system is able to output a correct prediction within less than 116 ms latency. 100% PPV has been attained in many trials and is realistically achievable consistently with user practice and/or employing a thresholded majority vote inference. Using transfer learning, these results are achievable after a sensor installation, data recording and network training/fine-tuning routine taking less than 10 min to complete, a reduction of 89.4% in the setup time of the traditional, non-transfer learning approach.


2021 ◽  
Author(s):  
Quoc-Huy Trinh ◽  
Minh-Van Nguyen

We propose a method that configures Fine-tuning to a combination of backbone DenseNet and ResNet to classify eight classes showing anatomical landmarks, pathological findings, to endoscopic procedures in the GI tract. Our Technique depends on Transfer Learning which combines two backbones, DenseNet 121 and ResNet 101, to improve the performance of Feature Extraction for classifying the target class. After experiment and evaluating our work, we get accuracy with an F1 score of approximately 0.93 while training 80000 and test 4000 images.


Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 272
Author(s):  
Khajamoinuddin Syed ◽  
William Sleeman ◽  
Michael Hagan ◽  
Jatinder Palta ◽  
Rishabh Kapoor ◽  
...  

The Radiotherapy Incident Reporting and Analysis System (RIRAS) receives incident reports from Radiation Oncology facilities across the US Veterans Health Affairs (VHA) enterprise and Virginia Commonwealth University (VCU). In this work, we propose a computational pipeline for analysis of radiation oncology incident reports. Our pipeline uses machine learning (ML) and natural language processing (NLP) based methods to predict the severity of the incidents reported in the RIRAS platform using the textual description of the reported incidents. These incidents in RIRAS are reviewed by a radiation oncology subject matter expert (SME), who initially triages some incidents based on the salient elements in the incident report. To automate the triage process, we used the data from the VHA treatment centers and the VCU radiation oncology department. We used NLP combined with traditional ML algorithms, including support vector machine (SVM) with linear kernel, and compared it against the transfer learning approach with the universal language model fine-tuning (ULMFiT) algorithm. In RIRAS, severities are divided into four categories; A, B, C, and D, with A being the most severe to D being the least. In this work, we built models to predict High (A & B) vs. Low (C & D) severity instead of all the four categories. Models were evaluated with macro-averaged precision, recall, and F1-Score. The Traditional ML machine learning (SVM-linear) approach did well on the VHA dataset with 0.78 F1-Score but performed poorly on the VCU dataset with 0.5 F1-Score. The transfer learning approach did well on both datasets with 0.81 F1-Score on VHA dataset and 0.68 F1-Score on the VCU dataset. Overall, our methods show promise in automating the triage and severity determination process from radiotherapy incident reports.


2020 ◽  
Vol 10 (17) ◽  
pp. 5792 ◽  
Author(s):  
Biserka Petrovska ◽  
Tatjana Atanasova-Pacemska ◽  
Roberto Corizzo ◽  
Paolo Mignone ◽  
Petre Lameski ◽  
...  

Remote Sensing (RS) image classification has recently attracted great attention for its application in different tasks, including environmental monitoring, battlefield surveillance, and geospatial object detection. The best practices for these tasks often involve transfer learning from pre-trained Convolutional Neural Networks (CNNs). A common approach in the literature is employing CNNs for feature extraction, and subsequently train classifiers exploiting such features. In this paper, we propose the adoption of transfer learning by fine-tuning pre-trained CNNs for end-to-end aerial image classification. Our approach performs feature extraction from the fine-tuned neural networks and remote sensing image classification with a Support Vector Machine (SVM) model with linear and Radial Basis Function (RBF) kernels. To tune the learning rate hyperparameter, we employ a linear decay learning rate scheduler as well as cyclical learning rates. Moreover, in order to mitigate the overfitting problem of pre-trained models, we apply label smoothing regularization. For the fine-tuning and feature extraction process, we adopt the Inception-v3 and Xception inception-based CNNs, as well the residual-based networks ResNet50 and DenseNet121. We present extensive experiments on two real-world remote sensing image datasets: AID and NWPU-RESISC45. The results show that the proposed method exhibits classification accuracy of up to 98%, outperforming other state-of-the-art methods.


2021 ◽  
Author(s):  
Geoffrey F. Schau ◽  
Hassan Ghani ◽  
Erik A. Burlingame ◽  
Guillaume Thibault ◽  
Joe W. Gray ◽  
...  

AbstractAccurate diagnosis of metastatic cancer is essential for prescribing optimal control strategies to halt further spread of metastasizing disease. While pathological inspection aided by immunohistochemistry staining provides a valuable gold standard for clinical diagnostics, deep learning methods have emerged as powerful tools for identifying clinically relevant features of whole slide histology relevant to a tumor’s metastatic origin. Although deep learning models require significant training data to learn effectively, transfer learning paradigms provide mechanisms to circumvent limited training data by first training a model on related data prior to fine-tuning on smaller data sets of interest. In this work we propose a transfer learning approach that trains a convolutional neural network to infer the metastatic origin of tumor tissue from whole slide images of hematoxylin and eosin (H&E) stained tissue sections and illustrate the advantages of pre-training network on whole slide images of primary tumor morphology. We further characterize statistical dissimilarity between primary and metastatic tumors of various indications on patch-level images to highlight limitations of our indication-specific transfer learning approach. Using a primary-to-metastatic transfer learning approach, we achieved mean class-specific areas under receiver operator characteristics curve (AUROC) of 0.779, which outperformed comparable models trained on only images of primary tumor (mean AUROC of 0.691) or trained on only images of metastatic tumor (mean AUROC of 0.675), supporting the use of large scale primary tumor imaging data in developing computer vision models to characterize metastatic origin of tumor lesions.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1993
Author(s):  
Jing Zhang ◽  
Zhenhao Li ◽  
Ruqian Hao ◽  
Xiangzhou Wang ◽  
Xiaohui Du ◽  
...  

Microscopic laser engraving surface defect classification plays an important role in the industrial quality inspection field. The key challenges of accurate surface defect classification are the complete description of the defect and the correct distinction into categories in the feature space. Traditional classification methods focus on the terms of feature extraction and independent classification; therefore, feed handcrafted features may result in useful feature loss. In recent years, convolutional neural networks (CNNs) have achieved excellent results in image classification tasks with the development of deep learning. Deep convolutional networks integrate feature extraction and classification into self-learning, but require large datasets. The training datasets for microscopic laser engraving image classification are small; therefore, we used pre-trained CNN models and applied two fine-tuning strategies. Transfer learning proved to perform well even on small future datasets. The proposed method was evaluated on the datasets consisting of 1986 laser engraving images captured by a metallographic microscope and annotated by experienced staff. Because handcrafted features were not used, our method is more robust and achieves better results than traditional classification methods. Under five-fold-validation, the average accuracy of the best model based on DenseNet121 is 96.72%.


Sign in / Sign up

Export Citation Format

Share Document