scholarly journals MapGo: Model-Assisted Policy Optimization for Goal-Oriented Tasks

Author(s):  
Menghui Zhu ◽  
Minghuan Liu ◽  
Jian Shen ◽  
Zhicheng Zhang ◽  
Sheng Chen ◽  
...  

In Goal-oriented Reinforcement learning, relabeling the raw goals in past experience to provide agents with hindsight ability is a major solution to the reward sparsity problem. In this paper, to enhance the diversity of relabeled goals, we develop FGI (Foresight Goal Inference), a new relabeling strategy that relabels the goals by looking into the future with a learned dynamics model. Besides, to improve sample efficiency, we propose to use the dynamics model to generate simulated trajectories for policy training. By integrating these two improvements, we introduce the MapGo framework (Model-Assisted Policy optimization for Goal-oriented tasks). In our experiments, we first show the effectiveness of the FGI strategy compared with the hindsight one, and then show that the MapGo framework achieves higher sample efficiency when compared to model-free baselines on a set of complicated tasks.

2022 ◽  
pp. 1-12
Author(s):  
Shuailong Li ◽  
Wei Zhang ◽  
Huiwen Zhang ◽  
Xin Zhang ◽  
Yuquan Leng

Model-free reinforcement learning methods have successfully been applied to practical applications such as decision-making problems in Atari games. However, these methods have inherent shortcomings, such as a high variance and low sample efficiency. To improve the policy performance and sample efficiency of model-free reinforcement learning, we propose proximal policy optimization with model-based methods (PPOMM), a fusion method of both model-based and model-free reinforcement learning. PPOMM not only considers the information of past experience but also the prediction information of the future state. PPOMM adds the information of the next state to the objective function of the proximal policy optimization (PPO) algorithm through a model-based method. This method uses two components to optimize the policy: the error of PPO and the error of model-based reinforcement learning. We use the latter to optimize a latent transition model and predict the information of the next state. For most games, this method outperforms the state-of-the-art PPO algorithm when we evaluate across 49 Atari games in the Arcade Learning Environment (ALE). The experimental results show that PPOMM performs better or the same as the original algorithm in 33 games.


Author(s):  
Zhenshan Bing ◽  
Christian Lemke ◽  
Zhuangyi Jiang ◽  
Kai Huang ◽  
Alois Knoll

Similar to their counterparts in nature, the flexible bodies of snake-like robots enhance their movement capability and adaptability in diverse environments. However, this flexibility corresponds to a complex control task involving highly redundant degrees of freedom, where traditional model-based methods usually fail to propel the robots energy-efficiently. In this work, we present a novel approach for designing an energy-efficient slithering gait for a snake-like robot using a model-free reinforcement learning (RL) algorithm. Specifically, we present an RL-based controller for generating locomotion gaits at a wide range of velocities, which is trained using the proximal policy optimization (PPO) algorithm. Meanwhile, a traditional parameterized gait controller is presented and the parameter sets are optimized using the grid search and Bayesian optimization algorithms for the purposes of reasonable comparisons. Based on the analysis of the simulation results, we demonstrate that this RL-based controller exhibits very natural and adaptive movements, which are also substantially more energy-efficient than the gaits generated by the parameterized controller. Videos are shown at https://videoviewsite.wixsite.com/rlsnake .


Author(s):  
Zequn Wang ◽  
Narendra Patwardhan

Abstract Model-free reinforcement learning based methods such as Proximal Policy Optimization, or Q-learning typically require thousands of interactions with the environment to approximate the optimal controller which may not always be feasible in robotics due to safety and time consumption. Model-based methods such as PILCO or BlackDrops, while data-efficient, provide solutions with limited robustness and complexity. To address this tradeoff, we introduce active uncertainty reduction-based virtual environments, which are formed through limited trials conducted in the original environment. We provide an efficient method for uncertainty management, which is used as a metric for self-improvement by identification of the points with maximum expected improvement through adaptive sampling. Capturing the uncertainty also allows for better mimicking of the reward responses of the original system. Our approach enables the use of complex policy structures and reward functions through a unique combination of model-based and model-free methods, while still retaining the data efficiency. We demonstrate the validity of our method on several classic reinforcement learning problems in OpenAI gym. We prove that our approach offers a better modeling capacity for complex system dynamics as compared to established methods.


Author(s):  
Zifei Jiang ◽  
Alan F. Lynch

We present a deep neural net-based controller trained by a model-free reinforcement learning (RL) algorithm to achieve hover stabilization for a quadrotor unmanned aerial vehicle (UAV). With RL, two neural nets are trained. One neural net is used as a stochastic controller which gives the distribution of control inputs. The other maps the UAV state to a scalar which estimates the reward of the controller. A proximal policy optimization (PPO) method, which is an actor-critic policy gradient approach, is used to train the neural nets. Simulation results show that the trained controller achieves a comparable level of performance to a manually-tuned PID controller, despite not depending on any model information. The paper considers different choices of reward function and their influence on controller performance.


Author(s):  
Feiyang Pan ◽  
Qingpeng Cai ◽  
An-Xiang Zeng ◽  
Chun-Xiang Pan ◽  
Qing Da ◽  
...  

Model-free reinforcement learning methods such as the Proximal Policy Optimization algorithm (PPO) have successfully applied in complex decision-making problems such as Atari games. However, these methods suffer from high variances and high sample complexity. On the other hand, model-based reinforcement learning methods that learn the transition dynamics are more sample efficient, but they often suffer from the bias of the transition estimation. How to make use of both model-based and model-free learning is a central problem in reinforcement learning.In this paper, we present a new technique to address the tradeoff between exploration and exploitation, which regards the difference between model-free and model-based estimations as a measure of exploration value. We apply this new technique to the PPO algorithm and arrive at a new policy optimization method, named Policy Optimization with Modelbased Explorations (POME). POME uses two components to predict the actions’ target values: a model-free one estimated by Monte-Carlo sampling and a model-based one which learns a transition model and predicts the value of the next state. POME adds the error of these two target estimations as the additional exploration value for each state-action pair, i.e, encourages the algorithm to explore the states with larger target errors which are hard to estimate. We compare POME with PPO on Atari 2600 games, and it shows that POME outperforms PPO on 33 games out of 49 games.


2020 ◽  
Vol 34 (04) ◽  
pp. 6941-6948
Author(s):  
Qi Zhou ◽  
HouQiang Li ◽  
Jie Wang

Model-based reinforcement learning algorithms tend to achieve higher sample efficiency than model-free methods. However, due to the inevitable errors of learned models, model-based methods struggle to achieve the same asymptotic performance as model-free methods. In this paper, We propose a Policy Optimization method with Model-Based Uncertainty (POMBU)—a novel model-based approach—that can effectively improve the asymptotic performance using the uncertainty in Q-values. We derive an upper bound of the uncertainty, based on which we can approximate the uncertainty accurately and efficiently for model-based methods. We further propose an uncertainty-aware policy optimization algorithm that optimizes the policy conservatively to encourage performance improvement with high probability. This can significantly alleviate the overfitting of policy to inaccurate models. Experiments show POMBU can outperform existing state-of-the-art policy optimization algorithms in terms of sample efficiency and asymptotic performance. Moreover, the experiments demonstrate the excellent robustness of POMBU compared to previous model-based approaches.


2019 ◽  
Author(s):  
Leor M Hackel ◽  
Jeffrey Jordan Berg ◽  
Björn Lindström ◽  
David Amodio

Do habits play a role in our social impressions? To investigate the contribution of habits to the formation of social attitudes, we examined the roles of model-free and model-based reinforcement learning in social interactions—computations linked in past work to habit and planning, respectively. Participants in this study learned about novel individuals in a sequential reinforcement learning paradigm, choosing financial advisors who led them to high- or low-paying stocks. Results indicated that participants relied on both model-based and model-free learning, such that each independently predicted choice during the learning task and self-reported liking in a post-task assessment. Specifically, participants liked advisors who could provide large future rewards as well as advisors who had provided them with large rewards in the past. Moreover, participants varied in their use of model-based and model-free learning strategies, and this individual difference influenced the way in which learning related to self-reported attitudes: among participants who relied more on model-free learning, model-free social learning related more to post-task attitudes. We discuss implications for attitudes, trait impressions, and social behavior, as well as the role of habits in a memory systems model of social cognition.


Sign in / Sign up

Export Citation Format

Share Document