scholarly journals Piezoelectric Properties of Composite Materials Made from Piezoelectric Ceramics and Epoxy Resin.

1991 ◽  
Vol 38 (6) ◽  
pp. 760-763
Author(s):  
Hiromu Ohuchi ◽  
Masamitsu Nishida
Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


2007 ◽  
Vol 42 (9) ◽  
pp. 1594-1601 ◽  
Author(s):  
Hongliang Du ◽  
Fusheng Tang ◽  
Fa Luo ◽  
Dongmei Zhu ◽  
Shaobo Qu ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (38) ◽  
pp. 23355-23362 ◽  
Author(s):  
Tao Huang ◽  
Xiaoliang Zeng ◽  
Yimin Yao ◽  
Rong Sun ◽  
Fanling Meng ◽  
...  

In recent decades, significant attention has been focused on developing composite materials with high thermal conductivity utilizing h-BN, which has outstanding thermal conductivity.


SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 361
Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan ◽  
Imam Hidayat ◽  
Nurato Nurato

The development of composite materials is increasingly widespread, which require superior mechanical properties. From many studies, it is found that the mechanical properties of composite materials are influenced by various factors, including the reinforcement content, both in the form of fibers and particle powder. However, those studies have not investigated the effect of the hardener weight fraction on the mechanical properties of resin composite materials. Even though its function as a hardener is likely to affect its mechanical properties, it might obtain the optimum composition of the reinforcing content and hardener fraction to get the specific mechanical properties. This study examines the effect of hardener weight fraction combined with fiber powder content on mechanical properties of EPR-174 epoxy resin matrix composite and determines the optimum of Them. The research was conducted by testing a sample of composite matrix resin material reinforced with coconut fiber powder. The Powder content was made in 3 levels, i.e.: 6%, 8%, and 10%. While the hardener fraction of resin was made in 3 levels, i.e.: 0.4, 0.5, and 0.6. The test results showed that pure resin had the lowest impact strength of 1.37 kJ/m2. The specimen with a fiber powder content of 6% has the highest impact strength i.e.: 4.92 kJ/m2. The hardener fraction of 0.5 has the highest impact strength i.e.: 4.55 kJ/m2. The fiber powder content of 8% produced the highest shear strength i.e.: 1.00 MPa. Meanwhile, the hardener fraction of 0.6 has the highest shear strength i.e.: 2.03 MPa.


Author(s):  
M.A. Serekpayeva ◽  
◽  
G.А. Kokayeva ◽  
R.K. Niyazbekova ◽  
S. Kardybai ◽  
...  

The outcomes of studying epoxy-based composite materials supplemented with microsilica are provided in the article. Microsilica was used as a filler. The samples were produced on the epoxy ED-20 basis supplemented with 2, 5 and 10 mas. % of microsilica. The structure and size of finely dispersed filler particles were defined. The obtained composites were tested for resistance to the effect of variable temperatures, corrosive, and abrasion. The study outcomes proved that samples supplemented with 2% of microsilica are more resistant to acid and alkali as well as to petrol than those ones supplemented with 25% of microsilica. Besides the amount of the filler from 2 to 10% doesn’t sufficiently affect the resistance to variable temperatures. When microsilica is added to epoxy resin, it causes scuff resistance increase. The conducted testing proved that the developed composite materials are resistant to the effect of variable temperatures, corrosive, and abrasion. This enables to use these materials as coatings and anti-corrosion protection during machine maintenance.


2011 ◽  
Vol 239-242 ◽  
pp. 486-489
Author(s):  
Ling Fang Xu ◽  
Wen Chen ◽  
Jing Zhou ◽  
Chang Ping Yang

Niobium doped Pb(Zr,Ti)O3fiber/epoxy resin 1-3 composites with different ceramic volume fraction of 10-85% were fabricated by filling-casting method. Effects of ceramic volume fraction on electric properties were investigated. For a typical 30% ceramic content composite, the thickness coupling coefficientkt, mechanical quality factorQm, acoustic impedanceZmand anisotropic propertykt/kpwere 0.67, 0.55, 11.03 MRayl and 2.23, respectively.


1996 ◽  
Author(s):  
S. Bourasseau ◽  
Marc Dupont ◽  
M. Pernice ◽  
Alain Thiriot ◽  
P. Blanquet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document