scholarly journals THE EFFECT OF COCONUT COIR FIBER POWDER CONTENT AND HARDENER WEIGHT FRACTIONS ON MECHANICAL PROPERTIES OF AN EPR-174 EPOXY RESIN COMPOSITE

SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 361
Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan ◽  
Imam Hidayat ◽  
Nurato Nurato

The development of composite materials is increasingly widespread, which require superior mechanical properties. From many studies, it is found that the mechanical properties of composite materials are influenced by various factors, including the reinforcement content, both in the form of fibers and particle powder. However, those studies have not investigated the effect of the hardener weight fraction on the mechanical properties of resin composite materials. Even though its function as a hardener is likely to affect its mechanical properties, it might obtain the optimum composition of the reinforcing content and hardener fraction to get the specific mechanical properties. This study examines the effect of hardener weight fraction combined with fiber powder content on mechanical properties of EPR-174 epoxy resin matrix composite and determines the optimum of Them. The research was conducted by testing a sample of composite matrix resin material reinforced with coconut fiber powder. The Powder content was made in 3 levels, i.e.: 6%, 8%, and 10%. While the hardener fraction of resin was made in 3 levels, i.e.: 0.4, 0.5, and 0.6. The test results showed that pure resin had the lowest impact strength of 1.37 kJ/m2. The specimen with a fiber powder content of 6% has the highest impact strength i.e.: 4.92 kJ/m2. The hardener fraction of 0.5 has the highest impact strength i.e.: 4.55 kJ/m2. The fiber powder content of 8% produced the highest shear strength i.e.: 1.00 MPa. Meanwhile, the hardener fraction of 0.6 has the highest shear strength i.e.: 2.03 MPa.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nachiappan Sukumar ◽  
Mekonnen Bayeleyegn ◽  
Sampath Aruna

Purpose Recently, composites have concerned considerable importance as a potential operational material. Lots of work have been carried out to enhance the mechanical properties of composites. The main aim of this paper is to develop bamboo mat as reinforcing material with bagasse fiber as filler using epoxy resin matrix composite. Design/methodology/approach In this research, the effect of fiber surface treatments on mechanical properties of epoxy resin composite with bagasse as filler has been developed and investigated. The extracted bamboo fibers were treated with NaOH to improve the surface roughness fiber. Using treated and untreated bamboo fiber handwoven mat has been produced to be used as reinforcement and bagasse fiber has been converted into powder to be filled as filler. Composite material is fabricated using bamboo fiber and bagasse fiber as filler with epoxy resin as a matrix using hand layup technique. Findings Then, tensile, flexural and compressive strength and water absorption tests were conducted on sodium hydroxide treated and untreated fiber composites. The test results comparing with and without alkali treated composites show that there was significant change in their strength and water absorption properties on alkali treated fiber. Originality/value This study is an original research paper.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2058 ◽  
Author(s):  
George Soupionis ◽  
Pantelitsa Georgiou ◽  
Loukas Zoumpoulakis

The present paper deals with the use of polymeric matrix composite materials reinforced with carbon fiber as concrete shear reinforcement materials. Accordingly, cement specimens were manufactured and coated with various types of carbon fabrics and epoxy resin in liquid and solid form (paste). Additionally, composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were manufactured. In all the specimens, the mechanical properties were estimated; the cement samples coated with composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were tested for compressive strength, while the other specimens were tested for shear and bending strength. The specimens were subjected to artificial aging through heat treatment for 8, 12 and 16 days. During the process of artificial aging, the temperature in the chamber reached the range of 65–75 °C. These composite materials exhibited high mechanical properties combined with adaptability. Both an external deterioration of the materials as well as a reduction in mechanical properties during their artificial aging heat treatment were observed. This was shown in the specimens that were not subjected to artificial aging, with an applied compression strength of 74 MPa, and after the artificial aging, there was a decrease of ~7%, with the compression strength being reduced to 68 MPa.


2019 ◽  
Vol 8 (4) ◽  
pp. 4497-4501 ◽  

Dry flower waste powder is incorporated in the Epoxy resin matrix to study the effect of the bio filler in Epoxy composites. Composite Specimens were prepared by using different volume fractions (0.4, 0.8, 0.12, 0.16, 0.20 v/v) of Dry flower waste bio powder in the Epoxy resin by hand layup method. Experiments were conducted to evaluate the mechanical properties such as Tensile Properties, Flexural properties and Impact strength of the epoxy composite. The results indicated that the bio filler had significant influence on the tensile and flexural modulus whereas tensile and flexural strength and impact strength of the composite are not significantly affected by the addition of the filler. Better mechanical properties were obtained at 12% v/v of Dry flower waste bio powder. Morphological properties were examined using the SEM images of tensile fractured specimen.


2021 ◽  
Vol 58 (1) ◽  
pp. 257-264
Author(s):  
Gabi Topor ◽  
Kamel Earar ◽  
Ion Ciuca ◽  
Sorin Berbece ◽  
Victorita Stefanescu ◽  
...  

The study of the mechanical behavior of materials intended for dental restorations is of crucial importance in the production of a finished product. In the present work, two resins were used for the material matrix, Bisphenol A diglycidyl methacrylate (Bis-GMA), hydroxyethylmethacrylate (HEMA) and a nanofiller (SiO2). This study focuses on the influence of nanoparticle size (30, 50, 100 and 150 nm) on the mechanical properties (flexural strenght and modulus, compression strenght and modulus and work of fracture) of the manufactured composite materials. The results showed improvements in the mechanical integrity of the samples, but differed depending on the size of the nanoparticles added. These differences are closely related to the active surface of the nanoparticles, leading to differences in filler-resin matrix compatibility.


2020 ◽  
Vol 38 (7A) ◽  
pp. 1026-1033
Author(s):  
Hwazen S. Fadhil

 Natural materials have been extensively used as reinforcements in polymer matrices instead of non-degradable synthetic reinforcement such as carbon, glass or aramid. The use is because of their low density, good mechanical properties, availability, and biodegradability. Peanut shell is one such natural waste filler used, and it contains cellulose, hemicellulose, and lignin. Natural fiber/particle sources are not only strong and lightweight but are relatively very cheap. This paper offers the comparison of the flexural, and impact energy test properties of the peanut shell reinforced with the epoxy resin matrix. Peanut shells add into the epoxy resin matrix with various weight fractions (2%, 4%, 6%, and 8%) and have been fabricated by hand lay-up procedure. Flexural strength and flexural modulus changed from (140MPa) to (160 MPa), and from (2 GPa) to (7.79 GPa) respectively, impact strength, and fracture toughness changed from (2.5 KJ/m2) to (7 KJ/m2), and from (2.23 MPa.m1/2) to (7.07 MPa.m1/2), respectively as a function of the particle weight fraction. The highest flexural strength and modulus obtained samples (reinforced 4% wt. peanut shell), while samples (reinforced +8% wt. peanut shell) provided the highest impact strength and fracture toughness.


2016 ◽  
Vol 13 (10) ◽  
pp. 6844-6849
Author(s):  
Kangning Wu ◽  
Xiang Ou ◽  
Qiang Han

The mechanical properties of epoxy resin will be influenced significantly in hot and humid environment. So silica powder and other fillers are often used to improve the mechanical properties of epoxy resin in real productions. In this paper, the mechanical parameters of epoxy resin and fused silica powder under different temperatures and moisture contents are investigated through the approaches of molecular dynamics simulation and generalized self-consistent method. There-after, the representative volume elements of epoxy resin and silica powder composite materials are constructed. The mechanical parameters of the composite materials are obtained through finite element simulations. Through the comparison of the different approaches, it can be found that the mechanical properties of epoxy resin composite are dwindled in hot-humid environment, which can be improved significantly by filling with silica powder.


Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


2021 ◽  
pp. 096739112098651
Author(s):  
Saeedeh Saadatyar ◽  
Mohammad Hosain Beheshty ◽  
Razi Sahraeian

Unidirectional carbon fiber-reinforced epoxy (UCFRE) is suffering from weak transverse mechanical properties and through-thickness properties. The effect of different amount (0.1, 0.3 and 0.5 phr which is proportional to 0.09, 0.27 and 0.46 wt%, respectively) of multiwall carbon nanotube (MWCNT), on transverse tensile properties, flexural strength, fracture toughness in transverse and longitudinal fiber directions, interlaminar shear strength and lap shear strength of UCFRE has been investigated. Dicyandiamide was used as a thermal curing agent of epoxy resin. MWCNT was dispersed in the epoxy resin by ultrasonic instrument and their dispersion state was investigated by scanning electron microscopy (SEM). The curing behavior of epoxy resin and its nanocomposites was assessed by differential scanning calorimetry. Results show that transverse tensile strength, modulus and strain-at-break were increased by 28.5%, 25% and 14%, respectively by adding 0.1 phr of MWCNT. Longitudinal flexural properties of UCFRE was not changed by adding different amount of MWCNT. Although longitudinal flexural strength was increased by 5% by adding 0.1 phr of MWCNT. Fracture toughness in transverse and longitudinal fiber directions was increased by 39% and 9%, respectively at 0.3 phr of MWCNT. Results also show that interlaminar shear strength and lap shear strength were increased at 0.3 phr of MWCNT by 8% and 5%, respectively. These increases in mechanical properties were due to the good adhesion of fibers to the matrix, interlocking and toughening action of MWCNT as revealed by SEM.


Sign in / Sign up

Export Citation Format

Share Document