scholarly journals Development and in vivo Evaluation Lovastatin by Self-Nanoemulsifying Drug Delivery System

Author(s):  
D.V. R. N. Bhikshapathi ◽  
Keerthi Priya

In the present investigation, self-nanoemulsifying drug delivery system (SNEDDS), of Lovastatin is being formulated to increase the solubility and bioavailability. The optimized Lovastatin SNEDDS formulation (F8) has a composition of Acrysol EL 135 as oil phase, Lauro glycol 90 and Capmul MCM as surfactant and co-surfactant respectively. Formulation F8 was found to be best formulation based on evaluation parameters. No drug precipitation or phase separation was observed in the optimized formulation. The particle size of the optimized formulation was found to be 4.9 nm and Z-Average of 71.5 nm indicating all the particles were in the nanometer range. The zeta potential of the optimized SNEDDS formulation was found to be -13.7 mV which comply with the requirement of the zeta potential for stability. Furthermore, pharmacokinetic studies in rats indicated that compared to the pure drug, the optimized SMEDDS formulation significantly improved the oral bioavailability of Lovastatin. Therefore, from our results the study suggests that the Lovastatin loaded self-nanoemulsifying formulation has a great potential for clinical application.

Author(s):  
S Brito Raj ◽  
Kothapalli Bonnoth Chandrasekhar ◽  
Kesavan Bhaskar Reddy

Abstract Background A simvastatin nanostructured lipid carrier loaded transdermal patch was developed to enhance the bioavailability and therapeutic effect. Methods Simvastatin NLC preparation was prepared by optimized hot homogenization technique and were characterized by particle size in nanometer, polydispersity index, zeta potential in millivolt, scanning electron microscopy, and entrapment efficiency by applying Box Behnken design utilizing multiple linear regression method. Results Chosen optimized NLC F7 formulation has particle size of 125.4 ± 2.66 nm, zeta potential of − 33.6 ± 2.42 mV, and PI of 0.480 ± 0.24. The NLC was loaded in transdermal patch by solvent evaporation method and evaluated for physical characteristics, drug content, skin permeation studies, and in-vivo pharmacokinetic studies in male albino Wistar rat. In-vivo pharmacokinetic studies in NLC loaded transdermal patch show an increase in AUC0-α in mg/ml when compared to marketed oral dosage form, which confirms the enhancement of bioavailability of simvastatin by NLC loaded transdermal patch. Conclusions From the data, it was concluded that drug-loaded NLC transdermal patch will be a promising drug delivery system for poorly bioavailable drugs.


2014 ◽  
Vol 10 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Maulick Chopra ◽  
Usha Y. Nayak ◽  
Aravind Kumar Gurram ◽  
M. Sreenivasa Reddy ◽  
K.B. Koteshwara

2021 ◽  
Vol 263 ◽  
pp. 124380
Author(s):  
Çiğdem İçhedef ◽  
Serap Teksöz ◽  
Oğuz Çetin ◽  
Burcu Aydın ◽  
İbrahim Sarıkavak ◽  
...  

2004 ◽  
Vol 20 (3) ◽  
pp. 347-353 ◽  
Author(s):  
C. Bott ◽  
M. W. Rudolph ◽  
A. R. J. Schneider ◽  
S. Schirrmacher ◽  
B. Skalsky ◽  
...  

2019 ◽  
Vol 72 (3) ◽  
pp. 396-408 ◽  
Author(s):  
Ana Laís Nascimento Vieira ◽  
Michelle Franz‐Montan ◽  
Luís Fernando Cabeça ◽  
Eneida de Paula

Sign in / Sign up

Export Citation Format

Share Document