scholarly journals Predicting the Number of Flowers in Satsuma Mandarin (Citrus unshiu Marc.) Trees Based on Citrus FLOWERING LOCUS T mRNA Levels

2017 ◽  
Vol 86 (3) ◽  
pp. 305-310 ◽  
Author(s):  
Fumie Nishikawa ◽  
Mitsunori Iwasaki ◽  
Hiroshi Fukamachi ◽  
Tomoko Endo
2012 ◽  
Vol 81 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Fumie Nishikawa ◽  
Mitsunori Iwasaki ◽  
Hiroshi Fukamachi ◽  
Keisuke Nonaka ◽  
Atsushi Imai ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Su Hyeon Lee ◽  
Cheol Woo Choi ◽  
Kyoung Mi Park ◽  
Wook-Hun Jung ◽  
Hyun Jin Chun ◽  
...  

The proper timing of flowering in response to environmental changes is critical for ensuring crop yields. FLOWERING LOCUS T (FT) homologs of the phosphatidylethanolamine-binding protein family play important roles as floral integrators in many crops. In soybean, we identified 17 genes of this family, and characterized biological functions in flowering for ten FT homologs. Overexpression of GmFT homologs in Arabidopsis revealed that a set of GmFT homologs, including GmFT2a/2b, GmFT3a/3b, and GmFT5a/5b, promoted flowering similar to FT; in contrast, GmFT1a/1b, GmFT4, and GmFT6 delayed flowering. Consistently, expressions of GmFT2a, GmFT2b, and GmFT5a were induced in soybean leaves in response to floral inductive short days, whereas expressions of GmFT1a and GmFT4 were induced in response to long days. Exon swapping analysis between floral activator GmFT2a and floral repressor GmFT4 revealed that the segment B region in the fourth exon is critical for their antagonistic functions. Finally, expression analysis of GmFT2a, GmFT5a, and GmFT4 in soybean accessions exhibiting various flowering times indicated that the mRNA levels of GmFT2a and GmFT5a were higher in early flowering accessions than in late-flowering accessions, while GmFT4 showed the opposite pattern. Moreover, the relative mRNA levels between GmFT2a/GmFT5a and GmFT4 was important in determining day length-dependent flowering in soybean accessions. Taken together, our results suggest that the functions of GmFT homologs have diversified into floral activators and floral repressors during soybean evolution, and the timing of flowering in response to changing day length is determined by modulating the activities of antagonistic GmFT homologs.


Author(s):  
Paul Vollrath ◽  
Harmeet S. Chawla ◽  
Sarah V. Schiessl ◽  
Iulian Gabur ◽  
HueyTyng Lee ◽  
...  

Abstract Key message A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. Abstract Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape.


2007 ◽  
Vol 144 (1) ◽  
pp. 248-257 ◽  
Author(s):  
Niclas Gyllenstrand ◽  
David Clapham ◽  
Thomas Källman ◽  
Ulf Lagercrantz

Sign in / Sign up

Export Citation Format

Share Document