scholarly journals Generating fuzzy autopilot for ship maneuvering

2011 ◽  
Vol 5 (9) ◽  
pp. 107
Author(s):  
Juan A. Contreras Montes ◽  
Fernando J. Durán Martínez ◽  
Alejandro Castro Celis

This paper introduces a method to generate autopilots for ship headings by using issues from the observation of control actions performed by human operators. The controller is designed based on fuzzy logic and uses triangular membership functions for the antecedent and consequent functions for Singleton type. For an automatic adjustment of the consequential, the recursive least squares method was used. This method is used to generate and validate the course driver of a 350-m tanker, at different load conditions.

2021 ◽  
pp. 107754632110191
Author(s):  
Fereidoun Amini ◽  
Elham Aghabarari

An online parameter estimation is important along with the adaptive control, that is, a time-dependent plant. This study uses both online identification and the simple adaptive control algorithm with velocity feedback. The recursive least squares method was used to identify the stiffness and damping parameters of the structure’s stories. Identification was carried out online without initial estimation and only by measuring the structural responses. The limited information regarding sensor measurements, parameter convergence, and the effects of the covariance matrix is examined. The integration of the applied online identification, the appropriate reference model selection in simple adaptive control, and adopting the proportional integral filter was used to limit the structural control response error. Some numerical examples are simulated to verify the ability of the proposed approach. Despite the limited information, the results show that the simultaneous use of online identification with the recursive least squares method and simple adaptive control algorithm improved the overall structural performance.


2012 ◽  
Vol 220-223 ◽  
pp. 1044-1047 ◽  
Author(s):  
Zhao Hua Liu ◽  
Jia Bin Chen ◽  
Yu Liang Mao ◽  
Chun Lei Song

Autoregressive moving average model (ARMA) was usually used for gyro random drift modeling. Because gyro random drift was a non-stationary, weak non-linear and time-variant random signal, model parameters were random and time-variant, too. For improving precision of gyro and reducing effects of random drift, this paper adopted two-stage recursive least squares method for ARMA parameter estimation. This method overcame the shortcomings of the conventional recursive extended least squares (RELS) algorithm. At the same time, the forgetting factor was introduced to adapt the model parameters change. The simulation experimental results showed that this method is effective.


Sign in / Sign up

Export Citation Format

Share Document