scholarly journals Effective Excess Charge Density in Water Saturated Porous Media

Author(s):  
Luong Duy Thanh

A model for the effective excess charge in a capillary as well as in porous media is developed for arbitrary pore scales. The prediction of the model is then compared with another published model that is limited for a thin electric double layer (EDL) assumption. The comparison shows that there is a deviation between two models depending on the ratio of capillary/pore radius and the Debye length. The reasons for the deviation between two models are not only due to the thin EDL assumption to get electrical potential and charge distribution in pores but also to some other approximations for integral evaluations. The results suggest that the model developed in this work can be used with arbitrary capillary/pore scale and thus is not restricted to the thin EDL assumption. Keywords: Zeta potential, porous media, electric double layer, effective excess charge. References [1] M. Aubert, Q.Y. Atangana, Groundwater, 34 (1996) 1010–1016.[2] A. Finizola, J.-F. Lénat, O. Macedo, D. Ramos, J.-C. Thouret, F. Sortino, J. Volcanol. Geoth. Res., 135 (2004) 343–360.[3] C. Doussan, L. Jouniaux, J.-L. Thony, Journal of Hydrology 267 (2002) 173–185.[4] F. Perrier, M. Trique, B. Lorne, J.-P. Avouac, S. Hautot, P. Tarits, Geophys. Res. Lett. 25 (1998) 1955–1958.[5] Martinez-Pagan, P., A. Jardani, A. Revil, and A. Haas, Geophysics 75 (2010) WA17–WA25.[6] Naudet, V., A. Revil, J.-Y. Bottero, and P. Bgassat, Geophysical Research Letters 30 (2003).[7] V. Naudet, M. Lazzari, A. Perrone, A. Loperte, S. Piscitelli, V. Lapenna, Engineering Geology 98 (2008) 156-167.[8] A. Perrone, A. Iannuzzi, V. Lapenna, P. Lorenzo, S. Piscitelli, E. Rizzo, F. Sdao, Journal of Applied Geophysics 56 (2004) 17-29.[9] Jouniaux, L., A. Maineult, V. Naudet, M. Pessel, and P. Sailhac, C. R. Geoscience 341 (2009).[10] Revil, A., and A. Jardani, The Self-Potential Method: Theory and Applications in Environmental Geosciences, Cambridge University Press, 2013.[11] Hunter, R., Zeta Potential in Colloid Science: Principles and Applications, Colloid Science Series, Academic Press, 1981.[12] Leroy, P., and A. Revil, Journal of Colloid and Interface Science, 270 (2004) 371–380.[13] T. Ishido, H. Mizutani, Journal of Geophysical Research 86 (1981) 1763-1775.[14] P. W. J. Glover, E. Walker, M. Jackson, Geophysics 77 (2012) D17–D43.[15] Revil, A., and P. Leroy, Journal of Geophysical Research 109 (2004).[16] Linde, N., D. Jougnot, A. Revil, S. K. Matthäi, T. Arora, D. Renard, and C. Doussan, Geophys. Res. Lett. 34 (2007) L03306.[17] Revil A. and Mahardika H, Water Resources Research 49 (2013) 744–766.[18] Jardani, A., A. Revil, A. Bolève, A. Crespy, J. Dupont, W. Barrash and B. Malama, Geophysical Research Letters, 34 (2007) L24,403.[19] L. Guarracino, D. Jougnot, Journal of Geophysical Research - Solid Earth 123 (2018) 52-65.[20] Jackson M.D., Leinov E., International Journal of Geophysics 2012 (2012).[21] Gierst L., J. Am. Chem. Soc. 88 (1966) 4768.[22] Rice, C., and R. Whitehead, J. Phys. Chem. 69 (1965) 4017–4024.[23] Pride, S., Physical Review B 50 (1994) 15,678–15,696.[24] Bear, J., Dynamics of Fluids in Porous Media, Dover Publications, New York, 1988. [25] Chan I. Chung, Extrusion of Polymers: Theory & Practice, Hanser-2nd edition, 2010.[26] J. Vinogradov, M. Z. Jaafar, M. D. Jackson, Journal of Geophysical Research 115 (2010).

2021 ◽  
Author(s):  
Damien Jougnot ◽  
Luong Duy Thanh ◽  
Mariangeles Soldi ◽  
Jan Vinogradov ◽  
Luis Guarracino

<p>Understanding streaming potential generation in porous media is of high interest for hydrological and reservoir studies as it allows to relate water fluxes to measurable electrical potential distributions in subsurface geological settings. The evolution of streaming potential <span>stems</span> from electrokinetic coupling between water and electrical fluxes due to the presence of an electrical double layer at the interface between the mineral and the pore water. Two different approaches can be used to model and interpret the generation of the streaming potential in porous media: the classical coupling coefficient approach based on the Helmholtz-Smoluchowski equation, and the effective excess charge density. Recent studies based on both approaches use a mathematical up-scaling procedure that employs the so-called fractal theory. In these studies, the porous medium is represented by a bundle of tortuous capillaries characterized by a fractal capillary-size distribution law. The electrokinetic coupling between the fluid flow and electric current is obtained by averaging the processes that take place in a single capillary. In most cases, closed-form expressions for the electrokinetic parameters are obtained in terms of macroscopic hydraulic variables like permeability, saturation and porosity. In this presentation we propose a review of the existing fractal distribution models that predict the streaming potential in porous media and discuss their benefits compared against other published models.</p>


Author(s):  
Reza Nosrati ◽  
Mehrdad Raisee ◽  
Ahmad Nourbakhsh

In the present paper a new model is proposed for electric double layer (EDL) overlapped in nanochannels. The model aimed to obtain a deeper insight of transport phenomena in nanoscale. Two-dimensional Nernst and ionic conservation equations are used to obtain electroosmotic potential distribution in flow field. In the proposed study, transport equations for flow, ionic concentration and electroosmotic potential are solved numerically via finite volume method. Moreover, Debye-Hu¨ckle (DH) approximation and symmetry condition, which limit the application, are avoided. Thus, the present model is suitable for prediction of electroosmotic flows through nanochannels as well as complicated asymmetric geometries with large nonuniform zeta potential distribution. For homogeneous zeta potential distribution, it has been shown that by reduction of channel height to values comparable with EDL thickness, Poisson-Boltzmann model produces inaccurate results and must be avoided. Furthermore, for overlapped electric double layer in nanochannels with heterogeneous zeta potential distribution it has been found that the present model returns modified ionic concentration and electroosmotic potential distribution compare to previous EDL overlapped models due to 2D solution of ionic concentration distribution. Finally, velocity profiles in EDL overlapped nanochannels are investigated and it has been showed that for pure electroosmotic flow the velocity profile deviates from the expected plug-like profile towards a parabolic profile.


Author(s):  
Ramin Zakeri ◽  
Eon Soo Lee ◽  
Mohammad Reza Salimi

In this paper, we present our results about simulation of 2D-EOF in Nano/Micro scales porous media using lattice Boltzmann method (LBM) in micro-channel for EOF. The high efficient numerical code use strongly high nonlinear Poisson Boltzmann equation to predicate behavior of EOF in complex geometry. The results are developed with precisely investigation of several effective parameters on permeability of EOF, such as geometry (channel height and number and location of charge), external electric field, thickness of Debye length (ionic concentration), and zeta potential. Our results are in excellent agreement with available analytical results. Our results show that for certain external electric field, zeta potential and porosity, there is an optimal Kh parameter (ionic concentration and channel height in this study) for velocity profiles. Based on the current study, homogenous zeta potential distribution on solid porous media, zeta potential and thickness of Debye length (Kh parameter) can dramatically affect on EOF permeability linearly or non-linearly, depend on amount of quantities. Thus, different arrangements are also considered. We show that prediction of EOF behavior in complex geometry with regarding role of effective parameters is completely possible for various applicable conditions.


2018 ◽  
Vol 40 (2) ◽  
pp. 109-116
Author(s):  
Luong Duy Thanh ◽  
Rudolf Sprik

Streaming potential in rocks is the electrical potential developing when an ionic fluid flows through the pores of rocks. The zeta potential is a key parameter of streaming potential and it depends on many parameters such as the mineral composition of rocks, fluid properties, temperature etc. Therefore, the zeta potential is different for various rocks and liquids. In this work, streaming potential measurements are performed for five rock samples saturated with six different monovalent electrolytes. From streaming potential coefficients, the zeta potential is deduced. The experimental results are then explained by a theoretical model. From the model, the surface site density for different rocks and the binding constant for different cations are found and they are in good agreement with those reported in literature. The result also shows that (1) the surface site density of Bentheim sandstone mostly composed of silica is the largest of five rock samples; (2) the binding constant is almost the same for a given cation but it increases in the order KMe(Na+) < KMe(K+) < KMe(Cs+) for a given rock.References Corwin R. F., Hoovert D.B., 1979. The self-potential method in geothermal exploration. Geophysics 44, 226-245. Dove P.M., Rimstidt J.D., 1994. Silica-Water Interactions. Reviews in Mineralogy and Geochemistry 29, 259-308. Glover P.W.J., Walker E., Jackson M., 2012. Streaming-potential coefficient of reservoir rock: A theoretical model. Geophysics, 77, D17-D43. Ishido T. and Mizutani H., 1981. Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics. Journal of Geophysical Research, 86, 1763-1775. Jackson M., Butler A., Vinogradov J., 2012. Measurements of spontaneous potential in chalk with application to aquifer characterization in the southern UK: Quarterly Journal of Engineering Geology & Hydrogeology, 45, 457-471. Jouniaux L. and T. Ishido, 2012. International Journal of Geophysics. Article ID 286107, 16p. Doi:10.1155/2012/286107. Kim S.S., Kim H.S., Kim S.G., Kim W.S., 2004. Effect of electrolyte additives on sol-precipitated nano silica particles. Ceramics International 30, 171-175. Kirby B.J. and Hasselbrink E.F., 2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis, 25, 187-202. Kosmulski M., and Dahlsten D., 2006. High ionic strength electrokinetics of clay minerals. Colloids and Surfaces, A: Physicocemical and Engineering Aspects, 291, 212-218. Lide D.R., 2009, Handbook of chemistry and physics, 90th edition: CRC Press. Luong Duy Thanh, 2014. Electrokinetics in porous media, Ph.D. Thesis, University of Amsterdam, the Netherlands. Luong Duy Thanh and Sprik R., 2016a. Zeta potential in porous rocks in contact with monovalent and divalent electrolyte aqueous solutions, Geophysics, 81, D303-D314. Luong Duy Thanh and Sprik R., 2016b. Permeability dependence of streaming potential coefficient in porous media. Geophysical Prospecting, 64, 714-725. Luong Duy Thanh and Sprik R., 2016c. Laboratory Measurement of Microstructure Parameters of Porous Rocks. VNU Journal of Science: Mathematics-Physics 32, 22-33. Mizutani H., Ishido T., Yokokura T., Ohnishi S., 1976. Electrokinetic phenomena associated with earthquakes. Geophysical Research Letters, 3, 365-368. Ogilvy A.A., Ayed M.A., Bogoslovsky V.A., 1969. Geophysical studies of water leakage from reservoirs. Geophysical Prospecting, 17, 36-62. Onsager L., 1931. Reciprocal relations in irreversible processes. I. Physical Review, 37, 405-426. Revil A. and Glover P.W.J., 1997. Theory of ionic-surface electrical conduction in porous media. Physical Review B, 55, 1757-1773. Scales P.J., 1990. Electrokinetics of the muscovite mica-aqueous solution interface. Langmuir, 6, 582-589. Behrens S.H. and Grier D.G., 2001. The charge of glass and silica surfaces. The Journal of Chemical Physics, 115, 6716-6721. Stern O., 1924. Zurtheorieder electrolytischendoppelschist. Z. Elektrochem, 30, 508-516. Tchistiakov A.A., 2000. Physico-chemical aspects of clay migration and injectivity decrease of geothermal clastic reservoirs: Proceedings World Geothermal Congress, 3087-3095. Wurmstich B., Morgan F.D., 1994. Modeling of streaming potential responses caused by oil well pumping. Geophysics, 59, 46-56. 


Sign in / Sign up

Export Citation Format

Share Document