capillary pore
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 15)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 325 ◽  
pp. 194-199
Author(s):  
Ámos Dufka ◽  
Tomáš Žlebek ◽  
Tomáš Melichar

The article deals with the influence of crystallization additives on the life of self-compacting concrete (so-called SCC concrete), which are exposed to chemically aggressive environments. The focus is not only on the effect of the crystallization additive on the characteristics of the capillary-pore structure of SCC concrete, but especially long life durability of self-compacting concrete (two years expozition). The effect of individual types of aggressive environment is assessed on the basis of a set of physico-mechanical and physico-chemical analyzes.


2021 ◽  
Author(s):  
Razyq Nasharuddin ◽  
Ganhau Luo ◽  
Neil Robinson ◽  
Andy Fourie ◽  
Michael Johns ◽  
...  

Cemented paste backfill (CPB) comprising mineral tailings, binders and mixing waters is an important potential support material in the mining industry. As the mechanical properties of CPB are significantly influenced by its microstructural characteristics the development of measurement tools to better understand its pore structure evolution is important for its increased utilisation. This study reports the application of low-field nuclear magnetic resonance (NMR) relaxation time measurements to characterise the microstructural evolution of CPB materials over 56 days of hydration, contrasting common tap water and hypersaline water (~22 wt% salt) as mixing waters. Distinct NMR relaxation time populations were evidenced within each CBP sample, revealing the presence of both capillary (T1,2 ≈ 10 ms) and gel pore water (T1,2 ≈ 300 – 500 µs), with time-dependent relaxation measurements facilitating characterisation of capillary pore structure evolution over the hydration period assessed. Hypersaline samples demonstrated a time-lag in this measured capillary pore evolution, relative to those hydrated with tap water, while hydration rates were observed to increase with increased CPB binder content. Further, both T1 and T2 NMR relaxation times were found to correlate with the uniaxial compressive strength of the CPB materials investigated, facilitating the formulation of a predictive correlation function between NMR relaxation characteristics and mechanical properties.


2020 ◽  
pp. 37-51
Author(s):  
Ig. S Konovalenko ◽  
E. V Shilko ◽  
Iv. S Konovalenko

Many infrastructural concrete facilities, such as dams, bridge footings, foundations of port facilities and offshore drilling platforms, operate in a permanent contact with water. The permeable fractured-porous structure of concrete determines the water-saturated state of the surface layers of such concrete elements. Under dynamic contact loading, the pore fluid is capable of exerting a significant mechanical influence on the local stress-strain state and strength characteristics of the surface layers of concrete. This has to be taken into account when assessing the wear intensity of surface layers and predicting a concrete element’s service life. The aforesaid determines the relevance of the study aimed at identifying the influence of the pore fluid and characteristics of the concrete pore structure on the strength and fracture pattern under quasistatic and dynamic compressive loading. The present work is devoted to the theoretical study and generalization of the laws of mechanical influence of the pore fluid on the dynamic strength of high-strength concrete with a two-scale pore structure. The emphasis in the study is on analyzing the contributions of each of the pore subsystems to the integral mechanical effect of the fluid. To carry out such an analysis, a coupled hydromechanical model is developed. It takes into account the compositional structure of concrete, the presence of a pore space in a cement stone of two different scales, the interaction of a pore liquid and a solid-phase skeleton based on the Bio poroelasticity model, as well as fluid filtration in a pore space. By using the developed model were performed the numerical studies of the dependence between the compressive strength of the representative concrete volumes of the mesoscopic scale on the strain rate, the sample size, the pore fluid viscosity, and pore structure parameters. The simulation results showed the possibility of combining the obtained dependencies into a generalized (master) curve in terms of a combined dimensionless parameter, which has the meaning similar to the Darcy number. We identified two key factors that control the type and parameters of the concrete master curve of the dynamic strength. The first factor is the mobility of the pore fluid in the network of the capillary pores. It determines the rate of stress equalization in the porous skeleton due to fluid flow. The second factor is the interconnection of large micropores with the network of the small capillary pore channels. It determines the magnitude of the decrease in stress concentration in micropores by filtering the excess pore fluid into the capillary pore network. It is shown that the contributions of these two factors to the amplitude of variation of the dynamic strength of the water-saturated concrete are additive, and their total contribution reaches 25 %.


Fuel ◽  
2020 ◽  
Vol 274 ◽  
pp. 117798 ◽  
Author(s):  
Lifei Yan ◽  
Hamed Aslannejad ◽  
S. Majid Hassanizadeh ◽  
Amir Raoof

Author(s):  
Kanchani Basnayake ◽  
Abul Fazal Mazumder ◽  
Upul Attanayake ◽  
Neal S. Berke

Controlling permeability of concrete is essential for enhancing durability and, thus, the service life. Concrete permeability is affected by the total volume of permeable voids and the continuity of the capillary pore structure. Even though concrete strength is the typical performance parameter used to define a wet curing duration, it is important to maintain wet curing until concrete develops a discontinuous capillary pore structure with a minimum volume of total permeable voids to assure durability. Therefore, the required wet curing period can be defined as the longest duration out from the (i) time to achieve the specified strength, (ii) time to develop a discontinuous capillary pore structure, and (iii) time to develop a minimum volume of total permeable voids. Since concrete strength evaluation methods are well developed, there is a need for developing procedures to evaluate concrete pore structure characteristics to decide on the wet curing duration. This study investigated the use of bulk electrical conductivity and porosity test methods described in ASTM C1760 and C642 to evaluate the (i) time to develop a discontinuous capillary pore structure and (ii) time to develop a minimum volume of total permeable voids, respectively. The suggested procedure of wet curing duration assessment is demonstrated for two concrete mixes: one with only Type I cement and the other with Type I cement and slag.


2020 ◽  
Vol 37 (4) ◽  
pp. 389-394
Author(s):  
Biqin DONG ◽  
Jingyi LIU ◽  
Chen LIN ◽  
Jianchao ZHANG ◽  
Shuxian HONG

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1762 ◽  
Author(s):  
Andrea Crețu ◽  
Carlos Mattea ◽  
Siegfried Stapf ◽  
Ioan Ardelean

The present work systematically investigates the influence of silica fume and organosilane addition on the hydration dynamics and the capillary pore formation of a cement paste. The cement samples were prepared with two water-to-cement ratios with increasing amounts of silica fume and of (3-Aminopropyl)triethoxysilane (APTES) organosilane. Low-field 1H nuclear magnetic resonance (NMR) relaxation measurements were performed during the hydration of the samples and after hydration, in order to reveal the dynamics of water molecules and the pore distribution. Increasing concentrations of silica fume impact the perceived hydration dynamics through the addition of magnetic impurities to the pore solution. However, there is a systematic change in the capillary pore size distribution with an increase in silica fume concentration. The results also show that the addition of APTES majorly affects the hydration dynamics, by prolonging the dormancy and hardening stages. While it does not influence the pore size distribution of capillary pores, it prevents cyclohexane from saturating the capillary pores.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 359 ◽  
Author(s):  
Yunsu Lee ◽  
Seungmin Lim ◽  
Hanseung Lee

Whether chloride resistance is highly influenced by chloride binding capacity remains unknown. In this study, the chloride resistance of Portland cement-based mortar incorporating aluminate cement and calcium carbonate was investigated considering the chloride binding capacity, pore structures and chloride diffusion coefficient from non-steady state chloride migration and natural chloride diffusion. The cement hydrates were investigated using X-ray diffraction and thermogravimetric analysis. The chloride binding capacity was evaluated based on the chloride adsorption from the solutions using the adsorption isotherm. The aluminate cement, as an available alumina source, can stimulate the formulation of layered double hydroxides, which in turn can increase the chloride binding capacity. The results of mercury intrusion porosimetry show that non-substituted (control) and substituted (only aluminate cement) specimens have capillary pore volume 8.9 vol % and 8.2 vol %, respectively. However, the specimen substituted with aluminate cement and calcium carbonate shows a higher capillary volume (12.9 vol %), which correlates with the chloride diffusion coefficient. Although the specimen substituted with calcium carbonate has a higher chloride binding capacity than the control, it does not necessarily affect the decrease in the chloride diffusion coefficient. The capillary pore volume can affect not only the chloride diffusion but also the chloride adsorption.


2019 ◽  
Vol 59 (5) ◽  
pp. 056015 ◽  
Author(s):  
X. Cao ◽  
D.H. Zhang ◽  
Y.J. Zhao ◽  
K.G. Xiao ◽  
J.J. Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document