Fast Terminal Sliding-Mode Fault-Tolerant Attitude Control of Magnetically Actuated Satellite

2019 ◽  
Vol 56 (5) ◽  
pp. 1636-1645 ◽  
Author(s):  
Dipak Kumar Giri ◽  
Manoranjan Sinha
2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Ruiyun Qi ◽  
Weiwei Su ◽  
Yizhen Meng

For deep space probe subject to uncertain time-varying inertia matrix, unknown external disturbances, actuator faults, and misalignment, a fault-tolerant attitude controller is designed in this paper, which is based on adaptive control and fast terminal sliding mode control (FTSMC) theories. A new method to handle actuator uncertainties is developed, which redefines the effectiveness matrix and the misalignment matrix. Moreover, an explicit sufficient condition is presented in order to construct the fault-tolerant attitude controller. The proposed controller can stabilize the attitude control system with a fast convergence rate and high precision. Simulations results demonstrate the superior performance of the proposed controller.


Author(s):  
Bing Huang ◽  
Ai-jun Li ◽  
Yong Guo ◽  
Chang-qing Wang ◽  
Jin-hua Guo

This paper investigates the finite-time attitude tracking control problem for spacecraft in the presence of external disturbances and actuator faults. Two anti-unwinding attitude tracking control schemes have been proposed based on the rotation matrix and sliding mode control technology. Utilizing a fast terminal sliding mode surface, the first controller can fulfill the finite-time attitude tracking control task with disturbance rejection ability. The second controller can improve the system reliability when the actuator fault occurs. Rigorous mathematical analysis and proof concludes that the proposed controllers can make a spacecraft track the desired attitude command in finite time. Numerical simulation results are presented to demonstrate the effectiveness of the proposed controllers.


Sign in / Sign up

Export Citation Format

Share Document