scholarly journals Fault-tolerant control for a class of n-order systems based on fast terminal sliding mode and extended state observer

2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Duoyang Li ◽  
Junzheng Wang

The position tracking problem of the electric cylinder, which has internal perturbation, external disturbance, and measurement noise of the output, is studied in this paper. A control method is proposed for achieving high tracking accuracy and tracking velocity for the wheel-legged robot application. Nonsingular fast terminal sliding mode (NFTSM) control is investigated to ensure that the system output can track the reference input in finite time. Besides, extended state observer (ESO) of the active disturbance rejection control (ADRC) is used to estimate the system lumped perturbation and compensated it in the controller based on the terminal sliding mode. This greatly reduces the chattering of the system caused by the gain of the sliding mode switch. Furthermore, tracking differentiator is designed to attenuate the output measurement noise. Simulation and experimental results illustrate that the NFTSM with ESO and TD algorithm, which is presented in this paper, has obvious superiority in the tracking precision and the antijam ability.


Author(s):  
Yang Gao ◽  
Yifei Wu ◽  
Xiang Wang ◽  
Qingwei Chen

In four-motor servo systems, actuator failures influence control performance seriously through huge inertia ratio changes and unknown disturbances. To solve this problem, an adaptive fault-tolerant control scheme based on characteristic modeling and extended state observer is proposed. First, an adaptive sliding mode observer is designed as fault detection part and offers motor information for controller. Second, to simplify complex dynamic model, this servo system is described by a second-order difference equation. This model integrates uncertainties into three time–varying characteristic parameters to reflect system status. Third, a discrete-time extended state observer is applied to restrain system error caused by actuator failure. Then, a fault-tolerant controller is designed based on characteristic model, and its stability is guaranteed in the sense of Lyapunov stability theorem. These four parts make up the adaptive control scheme and its effectiveness in system control, and fault tolerant is evaluated by both simulation and experiment results.


2015 ◽  
Vol 23 (15) ◽  
pp. 2478-2493 ◽  
Author(s):  
Xuejian Chang ◽  
Ling Liu ◽  
Wen Ding ◽  
Deliang Liang ◽  
Chongxin Liu ◽  
...  

A novel nonsingular fast terminal sliding mode (NNFTSM) control strategy based on the extended state observer (ESO) and the tracking differentiator (TD) is developed for the stabilization and tracking of the uncertain perturbed permanent magnet synchronous motor (PMSM) chaotic system. The proposed NNFTSM surface not only makes the system state rapidly converge to the equilibrium point in finite time with high steady-state precision, but also avoids the singular phenomenon. Furthermore, the ESO which does not rely on the mathematical model of the system is used for estimating uncertainties and disturbances to decrease the chattering caused by the big switching gain through compensating controller. Meanwhile, the TD is introduced to arrange the transition process for the reference input signal to realize the coordinated control between the rapidity and overshoot, and to decrease the initial impulse of the manipulative variable. The simulation results demonstrate that the proposed control scheme can flexibly restrain chaos which provides good dynamic and static performances, and has strong robustness to parameter variations and external load disturbances with low chattering.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Zhenxin He ◽  
Chuntong Liu ◽  
Ying Zhan ◽  
Hongcai Li ◽  
Xianxiang Huang ◽  
...  

A continuous nonsingular fast terminal sliding mode (NFTSM) control scheme with the extended state observer (ESO) and the tracking differentiator (TD) is proposed for second-order uncertain SISO nonlinear systems. The system’s disturbances and states can be estimated by introducing the ESO, then the disturbances are compensated effectively, and the ideal transient process of the system can be arranged based on TD to provide the target tracking signal and its high-order derivatives. The proposed controller obtains finite-time convergence property and keeps good robustness of sliding mode control (SMC) for disturbances. Moreover, compared with conventional SMC, the proposed control law is continuous and no chattering phenomenon exists. The property of system stability is guaranteed by Lyapunov stability theory. The simulation results show that the proposed method can be employed to shorten the system reaching time, improve the system tracking precision, and suppress the system chattering and the input noise. The proposed control method is finally applied for the rotating control problem of theodolite servo system.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141987114
Author(s):  
Qiuyan Zhang ◽  
Zhong Yang ◽  
Shaohui Wang ◽  
Yuhong Jiang ◽  
Changliang Xu ◽  
...  

In this article, the attitude control problem of a new-designed aerial trees-pruning robot is addressed. During the tree cutting process, the aerial trees-pruning robot will be disturbed by unknown external disturbances. At the same time, the model uncertainties will also affect the attitude controller. To overcome the above problems, an attitude controller is designed with a nonsingular fast terminal sliding mode method. First, the extended state observer is designed to estimate the modeling uncertainties and unknown disturbances. Then, the extended state observer-based nonsingular fast terminal sliding mode controller can make the tracking error of the attitude converge to zero in a finite time. Finally, a control allocation matrix switching strategy is proposed to solve the problem of the change of the aerial robot model in the cutting process. The final simulation and experimental results show that the extended state observer-based nonsingular fast terminal sliding mode controller designed in this article has good attitude control performance and can effectively overcome the modeling uncertainties and unknown disturbances. The attitude controller and control allocation matrix switching strategy ensure that the attitude angles of the aerial robot can quickly track the reference signals.


Sign in / Sign up

Export Citation Format

Share Document