scholarly journals Noise Characterization of a Full-Scale Nose Landing Gear

2018 ◽  
Vol 55 (6) ◽  
pp. 2476-2490 ◽  
Author(s):  
Gareth J. Bennett ◽  
Eleonora Neri ◽  
John Kennedy
2015 ◽  
Vol 14 (5-6) ◽  
pp. 729-766 ◽  
Author(s):  
Franck Bertagnolio ◽  
Helge Aa. Madsen ◽  
Christian Bak ◽  
Niels Troldborg ◽  
Andreas Fischer

Author(s):  
Eleonora Neri ◽  
John Kennedy ◽  
Gareth J. Bennett

The negative impact of aircraft noise includes effects on population’s health, land use planning and economic issues such as building restrictions and operating restrictions for airports. Thus, the reduction of noise generated by aircraft at take-off and approach is an essential consideration in the development of new commercial aircraft. Among the different aircraft noise sources, landing gear noise is one of the most significant during approach. This research presents results from the European Clean Sky funded ALLEGRA project, which investigated a full-scale Nose Landing Gear (NLG) model featuring the belly fuselage, bay cavity and hydraulic dressing. Tests were performed for a variety of wind speeds and yaw angles. In this paper, a characterization of the noise generated by the full-scale Nose Landing Gear (NLG) model is presented and the different techniques used for characterizing acoustic sources on the NLG are described. The landing gear noise source is characterized in terms of OASPL, directivity, source spectra, PNL and PNLT. A comparison between the NLG with and without the application of low noise technology is presented.


Silicon ◽  
2021 ◽  
Author(s):  
G. Sujatha ◽  
N. Mohankumar ◽  
R. Poornachandran ◽  
R. Saravana Kumar ◽  
Girish Shankar Mishra ◽  
...  

2021 ◽  
Vol 235 ◽  
pp. 112101
Author(s):  
Johnny Estephan ◽  
Changda Feng ◽  
Arindam Gan Chowdhury ◽  
Mauricio Chavez ◽  
Appupillai Baskaran ◽  
...  

2004 ◽  
Author(s):  
Jean-Guy Tartarin ◽  
Geoffroy Soubercaze-Pun ◽  
Abdelali Rennane ◽  
Laurent Bary ◽  
Robert Plana ◽  
...  

Measurement ◽  
2013 ◽  
Vol 46 (10) ◽  
pp. 3887-3897 ◽  
Author(s):  
Lide Fang ◽  
Yujiao liang ◽  
Qinghua Lu ◽  
Xiaoting Li ◽  
Ran Liu ◽  
...  

2007 ◽  
Vol 07 (03) ◽  
pp. L299-L312
Author(s):  
ALI ABOU-ELNOUR

Based on Boltzmann transport equation, the drift-diffusion, hydrodynamic, and Monte-Carlo physical simulators are accurately developed. For each simulator, the model equations are self-consistently solved with Poisson equation, and with Schrödinger equation when quantization effects take place, in one and two-dimensions to characterize the operation and optimize the structure of mm-wave devices. The effects of the device dimensions, biasing conditions, and operating frequencies on the accuracy of results obtained from the simulators are thoroughly investigated. Based on physical understanding of the models, the simulation results are analyzed to fully determine the limits at which a certain device simulator can be accurately and efficiently used to characterize the noise behavior of mm-wave devices.


Sign in / Sign up

Export Citation Format

Share Document