Simulation on Three-Dimensional Shock Interactions and Aerodynamic Heating Between Body and Wing

AIAA Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Mingyue Lin ◽  
Chun Wang ◽  
Jun Peng ◽  
Zonglin Jiang
AIAA Journal ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 1472-1481 ◽  
Author(s):  
G. X. Xiang ◽  
C. Wang ◽  
H. H. Teng ◽  
Z. L. Jiang

Author(s):  
John P. Clark ◽  
Richard J. Anthony ◽  
Michael K. Ooten ◽  
John M. Finnegan ◽  
P. Dean Johnson ◽  
...  

Accurate predictions of unsteady forcing on turbine blades are essential for the avoidance of high-cycle-fatigue issues during turbine engine development. Further, if one can demonstrate that predictions of unsteady interaction in a turbine are accurate, then it becomes possible to anticipate resonant-stress problems and mitigate them through aerodynamic design changes during the development cycle. A successful reduction in unsteady forcing for a transonic turbine with significant shock interactions due to downstream components is presented here. A pair of methods to reduce the unsteadiness was considered and rigorously analyzed using a three-dimensional, time resolved Reynolds-Averaged Navier Stokes (RANS) solver. The first method relied on the physics of shock reflections itself and involved altering the stacking of downstream components to achieve a bowed airfoil. The second method considered was circumferentially-asymmetric vane spacing which is well known to spread the unsteadiness due to vane-blade interaction over a range of frequencies. Both methods of forcing reduction were analyzed separately and predicted to reduce unsteady pressures on the blade as intended. Then, both design changes were implemented together in a transonic turbine experiment and successfully shown to manipulate the blade unsteadiness in keeping with the design-level predictions. This demonstration was accomplished through comparisons of measured time-resolved pressures on the turbine blade to others obtained in a baseline experiment that included neither asymmetric spacing nor bowing of the downstream vane. The measured data were further compared to rigorous post-test simulations of the complete turbine annulus including a bowed downstream vane of non-uniform pitch.


2021 ◽  
Author(s):  
C. Ollivier-Gooch ◽  
R. Paciorri ◽  
A. Assonitis ◽  
A. Bonfiglioli

Author(s):  
Michele Marconcini ◽  
Roberto Pacciani

A quasi-three-dimensional, blade-to-blade, time-accurate, viscous solver was used for the clocking optimization of a modern transonic heavy-duty, two stage gas turbine. Both stators and rotors operate in a transonic regime with fish-tail shock systems at the blade row exit. These shock systems interact with both stator and rotor wakes. A sensible reduction in the strength of shock waves was observed due to the upstream blade row wake passing. Such wake-shock interactions occur in the inter-blade gap, around locations which are fixed in the frame of reference of the downstream blade-row. The exploitation of such an effect to optimize the axial/circumferential position of blade rows is still compatible with the axial gap values commonly used for these kinds of stages. The results of the clocking investigation will be presented and discussed in terms of unsteady blade loading and efficiency variations.


2019 ◽  
Vol 31 (8) ◽  
pp. 086102 ◽  
Author(s):  
Enlai Zhang ◽  
Zhufei Li ◽  
Yiming Li ◽  
Jiming Yang

1986 ◽  
Vol 170 ◽  
pp. 411-433 ◽  
Author(s):  
D. J. Mee ◽  
R. J. Stalker ◽  
J. L. Stollery

The three-dimensional interactions of weak swept oblique shock and expansion waves and a turbulent boundary layer on a flat plate are investigated. Upstream influences in a single swept interaction are found to be consistent with a model of the flow involving shock/boundary-layer interaction characteristics. The model implies that there is more rapid thickening of the boundary layer close to the shock generator and this is seen to be consistent with surface streamline patterns. It is also found that a superposition principle, which is inherent in the triple-deck model of shock/boundary-layer interactions proposed by Lighthill, can be used to predict the pressure field and surface streamlines for the case of intersecting shock interactions and for the intersection of a shock with a weak expansion.


2013 ◽  
Vol 561 ◽  
pp. 454-459 ◽  
Author(s):  
Qing Ling Li ◽  
Wen Guang Jia ◽  
Chen Guang Dong ◽  
Rui Xiang Duan

According to the three-dimensional mathematical model and physical model of evacuated tube transportation(ETT) system, thermal-pressure coupling equations based on viscous fluid Navier-Stokes equation and k- ε turbulence model are established for the first time. The numerical simulation is carried out to investigate the inherent laws for different blockage ratios of ETT system. The simulation results show that: when the speed of the train and the pressure of the system are constants, in the temperature field, the aerodynamic heating is getting more as the blockage ratio increases, and its trend grows exponential. In the pressure field, with the increase of the blockage ratio, the stagnation pressure is gradually increased, but the growth is getting slower; vortex region pressure reduces gradually, and has accelerated the decreasing trend; the pressure difference between the head and the end of the train is linear increment.


Sign in / Sign up

Export Citation Format

Share Document