Modified Nonlinear Coupled Constitutive Relations Model for Hypersonic Nonequilibrium Flows

2020 ◽  
Vol 34 (4) ◽  
pp. 848-859
Author(s):  
Zhenyu Yuan ◽  
Wenwen Zhao ◽  
Zhongzheng Jiang ◽  
Weifang Chen ◽  
Ramesh K. Agarwal
2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040076
Author(s):  
Zhen-Yu Yuan ◽  
Zhong-Zheng Jiang ◽  
Wen-Wen Zhao ◽  
Wei-Fang Chen

This paper is focused on the gas properties over a cylinder from continuum to rarefied regimes based on the non-Newtonian constitutive model. This new constitutive model is first derived from Eu’s nonequilibrium ensemble method, which is intended for accurate description of nonequilibrium flows. Some assumptions and simplifications are made during the establishing progress of the new constitutive model by both Eu and Myong. To verify its accuracy, temperature contours and skin frictions around the cylinder are simulated by this new model. The inflow Mach number is equal to 10 and the Knudsen number ranges from 0.002 to 0.05. All simulation results are compared with Navier–Stokes (NS) and the direct simulation Monte Carlo (DSMC) methods in detail. The comparisons of friction around the surface show that the non-Newtonian constitutive models are better than the linear constitutive relations of NS equations for the prediction of nonequilibrium flow and much more close to DSMC simulation results.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1294-1302
Author(s):  
Djaffar Ait-Ali-Yahia ◽  
Wagdi G. Habashi

2007 ◽  
Vol 5 ◽  
pp. 273-278
Author(s):  
V.Yu Liapidevskii

Nonequilibrium flows of an inhomogeneous liquid in channels and pipes are considered in the long-wave approximation. Nonlinear dispersion hyperbolic flow models are derived allowing taking into account the influence of internal inertia during the relative motion of phases upon the structure of nonlinear wave fronts. The asymptotic derivation of dispersion hyperbolic models is shown on the example of classical Boussinesq equations. It is shown that the hyperbolic approximation of the equations has the same order of accuracy as the primary model.


Author(s):  
Luis Espath ◽  
Victor Calo

AbstractWe propose a phase-field theory for enriched continua. To generalize classical phase-field models, we derive the phase-field gradient theory based on balances of microforces, microtorques, and mass. We focus on materials where second gradients of the phase field describe long-range interactions. By considering a nontrivial interaction inside the body, described by a boundary-edge microtraction, we characterize the existence of a hypermicrotraction field, a central aspect of this theory. On surfaces, we define the surface microtraction and the surface-couple microtraction emerging from internal surface interactions. We explicitly account for the lack of smoothness along a curve on surfaces enclosing arbitrary parts of the domain. In these rough areas, internal-edge microtractions appear. We begin our theory by characterizing these tractions. Next, in balancing microforces and microtorques, we arrive at the field equations. Subject to thermodynamic constraints, we develop a general set of constitutive relations for a phase-field model where its free-energy density depends on second gradients of the phase field. A priori, the balance equations are general and independent of constitutive equations, where the thermodynamics constrain the constitutive relations through the free-energy imbalance. To exemplify the usefulness of our theory, we generalize two commonly used phase-field equations. We propose a ‘generalized Swift–Hohenberg equation’—a second-grade phase-field equation—and its conserved version, the ‘generalized phase-field crystal equation’—a conserved second-grade phase-field equation. Furthermore, we derive the configurational fields arising in this theory. We conclude with the presentation of a comprehensive, thermodynamically consistent set of boundary conditions.


Author(s):  
Cyprian Suchocki ◽  
Stanisław Jemioło

AbstractIn this work a number of selected, isotropic, invariant-based hyperelastic models are analyzed. The considered constitutive relations of hyperelasticity include the model by Gent (G) and its extension, the so-called generalized Gent model (GG), the exponential-power law model (Exp-PL) and the power law model (PL). The material parameters of the models under study have been identified for eight different experimental data sets. As it has been demonstrated, the much celebrated Gent’s model does not always allow to obtain an acceptable quality of the experimental data approximation. Furthermore, it is observed that the best curve fitting quality is usually achieved when the experimentally derived conditions that were proposed by Rivlin and Saunders are fulfilled. However, it is shown that the conditions by Rivlin and Saunders are in a contradiction with the mathematical requirements of stored energy polyconvexity. A polyconvex stored energy function is assumed in order to ensure the existence of solutions to a properly defined boundary value problem and to avoid non-physical material response. It is found that in the case of the analyzed hyperelastic models the application of polyconvexity conditions leads to only a slight decrease in the curve fitting quality. When the energy polyconvexity is assumed, the best experimental data approximation is usually obtained for the PL model. Among the non-polyconvex hyperelastic models, the best curve fitting results are most frequently achieved for the GG model. However, it is shown that both the G and the GG models are problematic due to the presence of the locking effect.


2021 ◽  
Vol 5 (2) ◽  
pp. 36
Author(s):  
Aleksander Muc

The main goal of building composite materials and structures is to provide appropriate a priori controlled physico-chemical properties. For this purpose, a strengthening is introduced that can bear loads higher than those borne by isotropic materials, improve creep resistance, etc. Composite materials can be designed in a different fashion to meet specific properties requirements.Nevertheless, it is necessary to be careful about the orientation, placement and sizes of different types of reinforcement. These issues should be solved by optimization, which, however, requires the construction of appropriate models. In the present paper we intend to discuss formulations of kinematic and constitutive relations and the possible application of homogenization methods. Then, 2D relations for multilayered composite plates and cylindrical shells are derived with the use of the Euler–Lagrange equations, through the application of the symbolic package Mathematica. The introduced form of the First-Ply-Failure criteria demonstrates the non-uniqueness in solutions and complications in searching for the global macroscopic optimal solutions. The information presented to readers is enriched by adding selected review papers, surveys and monographs in the area of composite structures.


Sign in / Sign up

Export Citation Format

Share Document