Analysis of Associative Ionization Rates for Hypersonic Flows

2021 ◽  
pp. 1-10
Author(s):  
Iain D. Boyd ◽  
Eswar Josyula
AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 74-81 ◽  
Author(s):  
S. O. Macheret ◽  
M. N. Shneider ◽  
R. B. Miles

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1061-1064
Author(s):  
S. Larigaldie ◽  
D. Bize ◽  
A. K. Mohamed ◽  
M. Ory ◽  
J. Soutade ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Joseph J. S. Shang ◽  
Hong Yan

Abstract Nearly all illuminating classic hypersonic flow theories address aerodynamic phenomena as a perfect gas in the high-speed range and at the upper limit of continuum gas domain. The hypersonic flow is quantitatively defined by the Mach number independent principle, which is derived from the asymptotes of the Rankine-Hugoniot relationship. However, most hypersonic flows encounter strong shock-wave compressions resulting in a high enthalpy gas environment that always associates with nonequilibrium thermodynamic and quantum chemical-physics phenomena. Under this circumstance, the theoretic linkage between the microscopic particle dynamics and macroscopic thermodynamics properties of gas is lost. When the air mixture is ionized to become an electrically conducting medium, the governing physics now ventures into the regimes of quantum physics and electromagnetics. Therefore, the hypersonic flows are no longer a pure aerodynamics subject but a multidisciplinary science. In order to better understand the realistic hypersonic flows, all pertaining disciplines such as the nonequilibrium chemical kinetics, quantum physics, radiative heat transfer, and electromagnetics need to bring forth.


2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


Sign in / Sign up

Export Citation Format

Share Document