Mache Effect and Combustion Instability in Solid Rocket Motor

1999 ◽  
Vol 15 (6) ◽  
pp. 856-860 ◽  
Author(s):  
Igor G. Assovskiy ◽  
Sergei A. Rashkovskiy
2021 ◽  
Author(s):  
Christopher Baczynski

A comprehensive numerical model for internal ballistic simulation under dynamic flow, combustion and structural vibration conditions is used to investigate the effectiveness of grain port area transitions of a reference solid rocket motor as a means for suppression of axial combustion instability symptoms. Modification of the propellant grain geometry is one of several traditional means for suppressing symptoms in actual motors. With respect to these symptoms, individual transient simulation runs show the evolution of the axial pressure wave and associated DC shift for the given grain geometry, as initiated by a given pressure disturbance. Limit pressure wave magnitudes are collected for a number of simulation runs for different grain area transition positions, steepness and aspect ratios, and mapped on an attenuation trend chart. Effects of acceleration, through structural vibration of the propellant surface, on the combustion process are investigated, and their influence on the effectiveness of grain area transitions is examined. With or without acceleration/vibrations effects included, the numerical results produced in this study confirm the significant ability of a grain area transition to suppress combustion instability symptoms.


2021 ◽  
Author(s):  
Giovanni Montesano

A study of the numerical modeling and prediction of nonlinear unsteady combustion instability within the combustion chamber of a solid rocket motor (SRM) is the main objective. The numerical model consists of a three-dimensional finite-element representation of a cylindrical-grain motor, coupled to a quasi-one-dimensional internal ballistic flow (IBF) model, where a quasi-steady rapid kinetic rate burning rate algorithm is used to model the propellant combustion and regression. Fluid-structure-combustion interaction subroutines are also employed to control the simulated motor firings and the data transferred between the fluid, structure and burning rate model components. Results illustrating the significant effects of structural vibrations on the burning rate and consequently the IBF are shown and compared to experimental data. Modeling considerations are illustrated, giving insight into the physical phenomena of SRM combustion instability.


2021 ◽  
Author(s):  
Christopher Baczynski

A comprehensive numerical model for internal ballistic simulation under dynamic flow, combustion and structural vibration conditions is used to investigate the effectiveness of grain port area transitions of a reference solid rocket motor as a means for suppression of axial combustion instability symptoms. Modification of the propellant grain geometry is one of several traditional means for suppressing symptoms in actual motors. With respect to these symptoms, individual transient simulation runs show the evolution of the axial pressure wave and associated DC shift for the given grain geometry, as initiated by a given pressure disturbance. Limit pressure wave magnitudes are collected for a number of simulation runs for different grain area transition positions, steepness and aspect ratios, and mapped on an attenuation trend chart. Effects of acceleration, through structural vibration of the propellant surface, on the combustion process are investigated, and their influence on the effectiveness of grain area transitions is examined. With or without acceleration/vibrations effects included, the numerical results produced in this study confirm the significant ability of a grain area transition to suppress combustion instability symptoms.


2021 ◽  
Author(s):  
Giovanni Montesano

A study of the numerical modeling and prediction of nonlinear unsteady combustion instability within the combustion chamber of a solid rocket motor (SRM) is the main objective. The numerical model consists of a three-dimensional finite-element representation of a cylindrical-grain motor, coupled to a quasi-one-dimensional internal ballistic flow (IBF) model, where a quasi-steady rapid kinetic rate burning rate algorithm is used to model the propellant combustion and regression. Fluid-structure-combustion interaction subroutines are also employed to control the simulated motor firings and the data transferred between the fluid, structure and burning rate model components. Results illustrating the significant effects of structural vibrations on the burning rate and consequently the IBF are shown and compared to experimental data. Modeling considerations are illustrated, giving insight into the physical phenomena of SRM combustion instability.


2015 ◽  
Vol 138 (3) ◽  
pp. 1892-1892
Author(s):  
Taeyoung Park ◽  
Hunki Lee ◽  
Won-Suk Ohm ◽  
Dohyung Lee

2016 ◽  
Vol 66 (3) ◽  
pp. 216 ◽  
Author(s):  
S. Saha ◽  
D. Chakraborty

<p class="NomenclatureClauseTitle">Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations compare closely with the literarture data. The growth rate of pressure oscillations of a cylindrical grain solid rocket motor is determined for different response functions at the fundamental longitudinal frequency. It is observed that for response function more than a critical value, the motor exhibits exponential growth rate of pressure oscillations.</p>


Sign in / Sign up

Export Citation Format

Share Document