Generation Mechanisms of Low-Frequency Centrifugal Fan Noise

AIAA Journal ◽  
10.2514/2.610 ◽  
1999 ◽  
Vol 37 (10) ◽  
pp. 1173-1179 ◽  
Author(s):  
K.-R. Fehse ◽  
W. Neise
AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1173-1179 ◽  
Author(s):  
K.-R. Fehse ◽  
W. Neise

2021 ◽  
Vol 263 (1) ◽  
pp. 5650-5663
Author(s):  
Hasan Kamliya Jawahar ◽  
Syamir Alihan Showkat Ali ◽  
Mahdi Azarpeyvand

Experimental measurements were carried out to assess the aeroacoustic characteristics of a 30P30N high-lift device, with particular attention to slat tonal noise. Three different types of slat modifications, namely slat cove filler, serrated slat cusp, and slat finlets have been experimentally examined. The results are presented for an angle of attack of α = 18 at a free-stream velocity of U = 30 m/s, which corresponds to a chord-based Reynolds number of Re = 7 x 10. The unsteady surface pressure near the slat region and far-field noise were made simultaneously to gain a deeper understanding of the slat noise generation mechanisms. The nature of the low-frequency broadband hump and the slat tones were investigated using higher-order statistical approaches for the baseline 30P30N and modified slat configurations. Continuous wavelet transform of the unsteady surface pressure fluctuations along with secondary wavelet transform of the broadband hump and tones were carried out to analyze the intermittent events induced by the tone generating resonant mechanisms. Stochastic analysis of the wavelet coefficient modulus of the surface pressure fluctuations was also carried out to demonstrate the inherent differences of different tonal frequencies. An understanding into the nature of the noise generated from the slat will help design the new generation of quite high-lift devices.


2020 ◽  
Vol 165 ◽  
pp. 107315
Author(s):  
Chen Wang ◽  
Minqing Wang ◽  
Kai Mai ◽  
Heyuan Li ◽  
Naitong Liu

Author(s):  
Jian-Cheng Cai ◽  
Da-Tong Qi ◽  
Yong-Hai Zhang

Tonal noise constitutes the major part of the overall fan noise, especially the blade passing frequency (BPF) noise which is generally the most dominant component. This paper studies the BPF tonal noise of a centrifugal fan, including the blade noise, casing aerodynamic noise, and casing structural noise caused by the flow-induced casing vibration. Firstly, generation mechanism and propagation process of fan noise were discussed and the measured spectra of fan noise and casing vibration were presented. Secondly, a fully 3-D transient simulation of the internal flow field of the centrifugal fan was carried out by the computational fluid dynamics (CFD) approach. The results revealed that the flow interactions between the impeller and the volute casing caused periodic pressure fluctuations on the solid walls of the impeller and casing. This pressure fluctuation induces aerodynamic noise radiation as dipole sources, as well as structural vibration as force excitations. Thirdly, using the acoustic analogy theory, the aeroacoustic dipole sources on the casing and blade surface were extracted. The BPF casing and blade aerodynamic sound radiation were solved by the boundary element method (BEM) taking into account the scattering effect of the casing structure. Finally, the casing structural noise was studied. The casing forced vibration and sound radiation under the excitation of BPF pressure fluctuation were calculated by finite element method (FEM) and BEM, respectively. The result indicates that at the studied flow rate, the sound power levels of the casing aerodynamic noise, blade aerodynamic noise and casing structural noise are 103 dB, 91 dB and 79 dB with the reference sound power of 1×10−12 W, respectively.


2013 ◽  
Author(s):  
Scott D. Sommerfeldt ◽  
Kent L. Gee

Author(s):  
Ken Okada

In recently constructed electric power plants, the forced draft fan (FDF), induced draft fan (IDF) and boost up fan (BUF) centrifugal fans and duct-systems have become larger in capacity and limited in space every year. As a centrifugal fan is enlarged, the diameter of the impeller is enlarged and its rotating speed is lowered. Therefore, there is an increasing tendency to generate a low frequency noise.5 In the case of an IDF or BUF, the rotating stall of the centrifugal fan frequently causes low frequency noise, since the inlet flow is often throttled during operation. If the hydrodynamic and acoustical characteristics are insufficient, a strong flow-induced vibration with low frequency noise is generated in the fan-duct system, and not only are problems caused in terms of structural strength, but also physical and physiological problems are induced due to low frequency noise.


2015 ◽  
Vol 656-657 ◽  
pp. 700-705
Author(s):  
Jian Dong Chen ◽  
Bei Bei Sun

The blower is a kind of garden machinery, which blows strong wind to clean up leaves by a centrifugal fan, but it causes a loud aerodynamic noise. To compromise the contradiction between large air flow rate and low fan noise, some optimizations are proposed to reduce fan noise without lowering its air volume. In this paper, a CFD numerical model to compute airflow field of blower is established, where the centrifugal fan is simulated by the MRF model, and theturbulent model is selected. By smoothing the transition section, improving the volute tongue and optimizing the shape and optimizing number of fan blade, the blower work performance is increased obviously. In order to find out the actual working point, both the fan and motor load characteristic curves are drawn out. The simulation results show that, at the actual working point, the speed of the centrifugal fan is reduced, while the flow rate of blower is raised up. The optimizations are applied to the blower, and the experiment of the improved blower shows the flow rate is increased 5%, and the noise is reduced 2dB.


2013 ◽  
Vol 31 (4) ◽  
pp. 665-673 ◽  
Author(s):  
K. Yamaguchi ◽  
T. Matsumuro ◽  
Y. Omura ◽  
D. Nunn

Abstract. Using a well-established magnetospheric very-low-frequency (VLF) ray tracing method, in this work we trace the propagation of individual rising- and falling-frequency elements of VLF chorus from their generation point in the equatorial region of the magnetosphere through to at least one reflection at the lower-hybrid resonance point. Unlike recent work by Bortnik and co-workers, whose emphasis was on demonstrating that magnetospheric hiss has its origins in chorus, we here track the motion in the equatorial plane of the whole chorus element, paying particular regard to movement across field lines, rotation, and compression or expansion of the wave pulse. With a generation point for rising chorus at the equator, it was found the element wave pulse remained largely field aligned in the generation region. However, for a falling tone generation point at 4000 km upstream from the equator, by the time the pulse crosses the equator the wavefield had substantial obliquity, displacement, and compression, which has substantial implications for the theory of falling chorus generation.


Sign in / Sign up

Export Citation Format

Share Document