Theory of Local Heat Transfer in Shock/Laminar Boundary-Layer Interactions

1998 ◽  
Vol 12 (3) ◽  
pp. 336-342 ◽  
Author(s):  
George R. Inger
1964 ◽  
Vol 86 (2) ◽  
pp. 259-264 ◽  
Author(s):  
R. A. Seban

Experiments on a system in which separation of a turbulent boundary layer occurred at a downward step in the surface of a plate and reattached on the plate downstream of the step have produced additional results for the local heat-transfer coefficient and for the velocity and temperature distribution in the separated and reattached regions of the flow. In neither region was there found the kind of similarity near the wall that characterizes flows that are dominated by the friction at the wall, so that even this first element of the usual rationalization of the heat transfer is unavailable for the interpretation of the results. The effect of suction or injection through a slot at the base of the step is also indicated and this demonstrates relatively small effects on both the pressure distribution and the local heat-transfer coefficient.


1960 ◽  
Vol 82 (2) ◽  
pp. 101-107 ◽  
Author(s):  
R. A. Seban

Local heat-transfer coefficients and recovery factors are presented for three different cylinders in a two-dimensional subsonic air flow, with emphasis on the effect of screen-produced turbulence on these quantities. The increase in turbulent intensity so realized produced larger local heat-transfer coefficients, in a way dependent upon the location on the cylinders, through a direct increase in the heat transfer to the laminar boundary layer, through an earlier transition to turbulence, or through an alteration in the character of the separated flow. Alternatively, recovery factors were affected less, being invariant with respect to the turbulent intensity for attached boundary layer flow, but demonstrating large changes in those separated flow regions for which increased free stream turbulence produced substantial changes in the nature of the separated flow.


Sign in / Sign up

Export Citation Format

Share Document