Solar proton events during the past three solar cycles

1989 ◽  
Vol 26 (6) ◽  
pp. 403-415 ◽  
Author(s):  
D. F. Smart ◽  
M. A. Shea

1990 ◽  
Vol 95 (D6) ◽  
pp. 7417 ◽  
Author(s):  
Charles H. Jackman ◽  
Anne R. Douglass ◽  
Richard B. Rood ◽  
Richard D. McPeters ◽  
Paul E. Meade




Radiocarbon ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Fusa Miyake ◽  
Kimiaki Masuda ◽  
Toshio Nakamura ◽  
Katsuhiko Kimura ◽  
Masataka Hakozaki ◽  
...  

AbstractTwo radiocarbon excursions (AD 774–775 and AD 993–994) occurred due to an increase of incoming cosmic rays on a short timescale. The most plausible cause of these events is considered to be extreme solar proton events (SPE). It is possible that there are other annual 14C excursions in the past that have yet to be confirmed. In order to detect more of these events, we measured the 14C contents in bristlecone pine tree-ring samples during the periods when the rate of 14C increase in the IntCal data is large. We analyzed four periods every other year (2479–2455 BC, 4055–4031 BC, 4465–4441 BC, and 4689–4681 BC), and found no anomalous 14C excursions during these periods. This study confirms that it is important to do continuous measurements to find annual cosmic-ray events at other locations in the tree-ring record.



2004 ◽  
Vol 22 (6) ◽  
pp. 2255-2271 ◽  
Author(s):  
V. Kurt ◽  
A. Belov ◽  
H. Mavromichalaki ◽  
M. Gerontidou

Abstract. A new catalogue of 253 solar proton events (SPEs) with energy >10MeV and peak intensity >10 protons/cm2.s.sr (pfu) at the Earth's orbit for three complete 11-year solar cycles (1970-2002) is given. A statistical analysis of this data set of SPEs and their associated flares that occurred during this time period is presented. It is outlined that 231 of these proton events are flare related and only 22 of them are not associated with Ha flares. It is also noteworthy that 42 of these events are registered as Ground Level Enhancements (GLEs) in neutron monitors. The longitudinal distribution of the associated flares shows that a great number of these events are connected with west flares. This analysis enables one to understand the long-term dependence of the SPEs and the related flare characteristics on the solar cycle which are useful for space weather prediction.



Solar Physics ◽  
1990 ◽  
Vol 126 (2) ◽  
pp. 385-401 ◽  
Author(s):  
J. Feynman ◽  
T. P. Armstrong ◽  
L. Dao-Gibner ◽  
S. Silverman


2017 ◽  
Vol 7 ◽  
pp. A14 ◽  
Author(s):  
Miikka Paassilta ◽  
Osku Raukunen ◽  
Rami Vainio ◽  
Eino Valtonen ◽  
Athanasios Papaioannou ◽  
...  


2019 ◽  
Author(s):  
◽  
Vitaly Ishkov ◽  
Yury Logachev ◽  
Galina Bazilevskaya ◽  
Elena Daibog ◽  
...  




1991 ◽  
Vol 28 (5) ◽  
pp. 614-616 ◽  
Author(s):  
L. J. Lanzerotti ◽  
D. W. Maurer ◽  
H. H. Sauer ◽  
R. D. Zwickl


1969 ◽  
Vol 47 (2) ◽  
pp. 131-134 ◽  
Author(s):  
L. W. Hewitt

Observations of partial reflections from the ionosphere at vertical incidence at 2.66 MHz have been made at Resolute Bay, geographic latitude 74.7 °N, since September 1963. By measuring the amplitudes of the ordinary and extraordinary backscattered waves information is obtained about electron number densities in the lower ionosphere. The results presented in this paper show that the partial reflection technique is more sensitive than most other ground-based experiments for the detection of D-region ionization increases associated with small solar proton events. Results obtained by the partial reflection experiment during the events of 5 February 1965 and 16 July 1966 are presented and compared with VLF and satellite observations.



Sign in / Sign up

Export Citation Format

Share Document