odd nitrogen
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 2)

H-INDEX

35
(FIVE YEARS 1)

2019 ◽  
Vol 19 (2) ◽  
pp. 767-783 ◽  
Author(s):  
Evgenia Galytska ◽  
Alexey Rozanov ◽  
Martyn P. Chipperfield ◽  
Sandip. S. Dhomse ◽  
Mark Weber ◽  
...  

Abstract. Despite the recently reported beginning of a recovery in global stratospheric ozone (O3), an unexpected O3 decline in the tropical mid-stratosphere (around 30–35 km altitude) was observed in satellite measurements during the first decade of the 21st century. We use SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) measurements for the period 2004–2012 to confirm the significant O3 decline. The SCIAMACHY observations show that the decrease in O3 is accompanied by an increase in NO2. To reveal the causes of these observed O3 and NO2 changes, we performed simulations with the TOMCAT 3-D chemistry-transport model (CTM) using different chemical and dynamical forcings. For the 2004–2012 time period, the TOMCAT simulations reproduce the SCIAMACHY-observed O3 decrease and NO2 increase in the tropical mid-stratosphere. The simulations suggest that the positive changes in NO2 (around 7 % decade−1) are due to similar positive changes in reactive odd nitrogen (NOy), which are a result of a longer residence time of the source gas N2O and increased production via N2O + O(1D). The model simulations show a negative change of 10 % decade−1 in N2O that is most likely due to variations in the deep branch of the Brewer–Dobson Circulation (BDC). Interestingly, modelled annual mean “age of air” (AoA) does not show any significant changes in transport in the tropical mid-stratosphere during 2004–2012. However, further analysis of model results demonstrates significant seasonal variations. During the autumn months (September–October) there are positive AoA changes that imply transport slowdown and a longer residence time of N2O allowing for more conversion to NOy, which enhances O3 loss. During winter months (January–February) there are negative AoA changes, indicating faster N2O transport and less NOy production. Although the variations in AoA over a year result in a statistically insignificant linear change, non-linearities in the chemistry–transport interactions lead to a statistically significant negative N2O change.


2019 ◽  
Vol 127 ◽  
pp. 01005
Author(s):  
Kseniia Golubenko ◽  
Irina Mironova ◽  
Eugene Rozanov

In this paper we present the study of polar winter atmospheric response to middle range energy electron precipitations. We analse the variability of the odd nitrogen group NOx, hydrogen group HOx in the polar wonter atmosphere and estimate the ozone (O3) depletion caused by the middle range energy electron precipitations. For the study we exploit 1-D radiative-convective model with interactive neutral and ion chemistry. Ionization rates induced by middle-energy electrons were taken from the CMIP6 (Coupled Model Intercomparison Project Phase 6) solar forcing dataset. The atmospheric response to ionization rates induced by middleenergy electrons during polar night consists of increase of mesospheric HOx by 0.1-0.4 ppbv and NOx by 10-90 ppbv driving ozone losses up to 5% over zonal band of about 750 NH.


2018 ◽  
Author(s):  
Evgenia Galytska ◽  
Alexey Rozanov ◽  
Martyn P. Chipperfield ◽  
Sandip S. Dhomse ◽  
Mark Weber ◽  
...  

Abstract. Despite the recently reported beginning of a recovery in global stratospheric ozone (O3), an unexpected O3 decline in the tropical mid-stratosphere (around 30–35 km altitude) was observed in satellite measurements during the first decade of the 21st century. We use SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) measurements for the period 2004–2012 to confirm the significant O3 decline. The SCIAMACHY observations also show that the decrease in O3 is accompanied by an increase in NO2. To reveal the causes of these observed O3 and NO2 changes, we performed simulations with the TOMCAT 3D Chemistry-Transport Model (CTM) using different chemical and dynamical forcings. For the 2004–2012 time period, the TOMCAT simulations reproduce the SCIAMACHY-observed O3 decrease and NO2 increase in the tropical mid-stratosphere. The simulations suggest that the positive changes in NO2 (around 7 % per decade) are due to similar positive changes in reactive odd nitrogen (NOy), which are a result of a longer residence time of the source gas N2O and increased production via N2O + O(1D). The model simulations show a negative change of 10 % per decade in N2O that is most likely due to variations in the deep branch of the Brewer-Dobson Circulation (BDC). Interestingly, modelled annual mean age-of-air (AoA) does not show any significant changes in the transport in the tropical mid-stratosphere during 2004–2012. However, further analysis of model results demonstrate significant seasonal variations. During the autumn months (September–October) there are positive AoA changes, that imply transport slowdown and a longer residence time of N2O allowing larger conversion to NOy which enhances O3 loss. During winter months (January–February) there are negative AoA changes, indicating faster N2O transport and less NOy production. Although the changes in AoA cancel out when averaging over the year, non-linearities in the chemistry-transport interactions mean that the net negative N2O change remains.


2018 ◽  
pp. 87-140
Author(s):  
Harold S. Johnson
Keyword(s):  

2017 ◽  
Vol 17 (5) ◽  
pp. 3573-3604 ◽  
Author(s):  
Bernd Funke ◽  
William Ball ◽  
Stefan Bender ◽  
Angela Gardini ◽  
V. Lynn Harvey ◽  
...  

Abstract. We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx  =  NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March–April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2–0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05–0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.


2016 ◽  
Author(s):  
Bernd Funke ◽  
William Ball ◽  
Stefan Bender ◽  
Angela Gardini ◽  
V. Lynn Harvey ◽  
...  

Abstract. We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80km) atmospheric models with observations of odd nitrogen (NOx = NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3d Chemistry Transport model (3dCTM), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modeling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March–April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2–0.05 hPa) being likely caused by an overestimation of descent velocities. On the other hand, upper mesospheric temperatures (at 0.05–0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too slow descent and hence too low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.


Author(s):  
Jack G. Calvert ◽  
John J. Orlando ◽  
William R. Stockwell ◽  
Timothy J. Wallington

Reactive (or “odd”) nitrogen is emitted into the atmosphere in a variety of forms, with the most important being NOx (NO and NO2), ammonia (NH3), and nitrous oxide (N2O). Emissions of these species into the atmosphere have been summarized, for example, by the IPCC Fourth Assessment Report (the AR4; IPCC, 2007). Some discussion of NOx emissions and trends has also been presented in Chapter I. Emissions of NOx are mainly the result of anthropogenic activity associated with fossil fuel combustion and industrial activity. For the 1990s, the AR4 estimates total anthropogenic NOx emissions of 33.4 TgN yr−1, with natural emissions (mostly from soil and lightning) accounting for an additional 8.4–13.7 TgN yr−1. Ammonia emissions are comparable in magnitude to those for NOx, with anthropogenic emissions (45.5 TgN yr−1) again exceeding natural emissions (10.6 TgN yr−1). Although the majority of the ammonia produces aerosols or is scavenged by aerosol and is subsequently lost from the atmosphere, some gas phase oxidation does occur, which can in part lead to NOx production. The N2O source strength is about 17.7 TgN yr−1, with natural sources outweighing anthropogenic ones (IPCC, 2007). However, N2O is essentially inert in the troposphere, and thus the vast majority of its photooxidation and concomitant NOx release occurs in the stratosphere. The major NOx − related reactions occurring in the Earth’s troposphere are summarized in Figure III-A-1. As just alluded to, the species NO and NO2 are jointly referred to as NOx and are often treated collectively. This is because, under daytime conditions, these two species are rapidly interconverted, with the interconversion occurring on a much shorter timescale than the loss of either species.


2015 ◽  
Vol 33 (5) ◽  
pp. 561-572 ◽  
Author(s):  
S. Kirkwood ◽  
A. Osepian ◽  
E. Belova ◽  
J. Urban ◽  
K. Pérot ◽  
...  

Abstract. Precipitation of high-energy electrons (EEP) into the polar middle atmosphere is a potential source of significant production of odd nitrogen, which may play a role in stratospheric ozone destruction and in perturbing large-scale atmospheric circulation patterns. High-speed streams of solar wind (HSS) are a major source of energization and precipitation of electrons from the Earth's radiation belts, but it remains to be determined whether these electrons make a significant contribution to the odd-nitrogen budget in the middle atmosphere when compared to production by solar protons or by lower-energy (auroral) electrons at higher altitudes, with subsequent downward transport. Satellite observations of EEP are available, but their accuracy is not well established. Studies of the ionization of the atmosphere in response to EEP, in terms of cosmic-noise absorption (CNA), have indicated an unexplained seasonal variation in HSS-related effects and have suggested possible order-of-magnitude underestimates of the EEP fluxes by the satellite observations in some circumstances. Here we use a model of ionization by EEP coupled with an ion chemistry model to show that published average EEP fluxes, during HSS events, from satellite measurements (Meredith et al., 2011), are fully consistent with the published average CNA response (Kavanagh et al., 2012). The seasonal variation of CNA response can be explained by ion chemistry with no need for any seasonal variation in EEP. Average EEP fluxes are used to estimate production rate profiles of nitric oxide between 60 and 100 km heights over Antarctica for a series of unusually well separated HSS events in austral winter 2010. These are compared to observations of changes in nitric oxide during the events, made by the sub-millimetre microwave radiometer on the Odin spacecraft. The observations show strong increases of nitric oxide amounts between 75 and 90 km heights, at all latitudes poleward of 60° S, about 10 days after the arrival of the HSS. These are of the same order of magnitude but generally larger than would be expected from direct production by HSS-associated EEP, indicating that downward transport likely contributes in addition to direct production.


2013 ◽  
Vol 13 (8) ◽  
pp. 21961-21988 ◽  
Author(s):  
H. Lei ◽  
J. X. L. Wang

Abstract. As precursors for tropospheric ozone and nitrate aerosols, Nitrogen oxides (NOx) in present atmosphere and its transformation in responding to emission and climate perturbations are studied by CAM-Chem model and air quality measurements including National Emission Inventory (NEI), Clean Air Status and Trends Network (CASTNET) and Environmental Protection Agency Air Quality System (EPA AQS). It is found that not only the surface ozone formation but also the nitrate formation is associated with the relative emissions of NOx and volatile organic compounds (VOC). Due to the availability of VOC and associated NOx titration, ozone productions in industrial regions increase in warmer conditions and slightly decrease against NOx emission increase, which is converse to the response in farming region. The decrease or small increase in ozone concentrations over industrial regions result in the responded nitrate increasing rate staying above the increasing rate of NOx emissions. It is indicated that ozone concentration change is more directly affected by changes in climate and precursor emissions, while nitrate concentration change is also affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations on the historical emission and air quality records on typical pollution areas further confirm the conclusion drawn from modeling experiments.


Sign in / Sign up

Export Citation Format

Share Document